Experimental S2S Forecasting of Atmospheric Rivers Over the Western United States

Duane Waliser¹, <u>Mike DeFlorio²</u>, F. Martin Ralph², Bin Guan^{1,3}, Aneesh Subramanian⁴, Alexander Goodman¹, Shakeel Asharaf¹, Peter G. Gibson¹, Luca Delle Monache², Zhenhai Zhang², Frédéric Vitart⁵, Alexander Gershunov², Kristen Guirguis², Hai Lin⁶, Arun Kumar⁷

ECMWF S2S Workshop; Reading, U.K.; 4 April 2019

¹NASA Jet Propulsion Laboratory/California Institute of Technology; Pasadena, CA ²Center for Western Weather, Water and Extremes, University of California, San Diego, Scripps Institution of Oceanography; La Jolla, CA ³Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles; Los Angeles, CA ⁴University of Colorado, Boulder; Boulder, CO ⁵European Centre for Medium Range Weather Forecasts; Reading, UK ⁶Environment and Climate Change Canada; Montreal, Canada ⁷Climate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland

Contains key figures/concepts from:

- 1. DeFlorio et al. 2018, Global assessment of atmospheric river prediction skill, J. Hydromet., **19**, 409-426, doi:https://doi.org/10.1175/JHM-D-17-0135.1.
- 2. DeFlorio et al. 2019a, Global evaluation of atmospheric river subseasonal prediction skill, Clim. Dyn., doi:10.1007/s00382-018-4309-x.
- 3. DeFlorio et al. 2019b, Multi-model hindcast skill assessment of atmospheric river prediction skill over the Western U.S., in prep
- 4. Guan and Waliser 2015, Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies, J. Geophys. Res., **120**, 12514-12535.

Center for Western Weather and Water Extremes

T UC SAN DIEGO

A multi-institutional research effort sponsored by California DWR

Overview of S2S AR Team

Center for Western Weather and Water Extremes SCRIPPS INSTITUTION OF OCEANOGRAPHY AT UC SAN DIEGO

S2S AR Prediction Team Duane Waliser¹, F. Martin Ralph² (co-Pls)

Mike DeFlorio*², Aneesh Subramanian*³, William Chapman², Jason Cordeira⁴, Luca Delle Monache², Alexander Gershunov², Peter Gibson¹, Alexander Goodman¹, Bin Guan¹, Kristen Guirguis², Brian Kawzenuk², Arun Kumar⁵, Hai Lin⁶, Tamara Shulgina², Rui Sun², Frederic Vitart⁷, Anna Wilson², Zhenhai Zhang²

*denotes co-lead researcher

AT UC SAN DIEGO

Affiliations: ¹NASA JPL/CalTech; ²CW3E, SIO-UCSD; ³University of Colorado Boulder; ⁴Plymouth State University; ⁵NCEP; ⁶ECCC; ⁷ECMWF

Center for Western Weather and Water Extremes scripps institution of oceanography

Atmospheric rivers and their associated flood and hazard risks occur globally and influence climate and water extremes.

NOAA ESRL

Over 90% of poleward moisture transport at midlatitudes is by ARs that take up only ~10% of the zonal circumference.

In the west, ARs account for ~40% of annual precipitation and most floods.

Zhu and Newell 1998 Ralph et al. 2004

Center for Western Weather and Water Extremes

Source: NASA JPL

Atmospheric rivers:

- can carry as much as water as 25 Mississippi Rivers, and can provide up to 50% of West Coast precipitation
 - are about 500 miles wide (Ralph et al. 2017, Guan et al. 2018) and are located above the lowest mile of the atmosphere
 - sometimes tap tropical moisture near Hawaii, transporting concentrated water vapor for thousands of miles

Center for Western Weather and Water Extremes

SCRIPPS INSTITUTION OF OCEANOGRAPHY AT UC SAN DIEGO

•

Why are our water challenges so unique in California?

Center for Western Weather and Water Extremes

Precipitation is uniquely variable year-to-year in the western U.S.

Ratio of Year-to-Year Variation in Precipitation over Average Precipitation

Caption: Map shows the ratio of the year-to-year variability in precipitation divided by the long-term mean precipitation (based on TRMM, 1998-2016). Thus, the eastern half of the country vary rarely experiences a significant variation from their typical precipitation totals (~1-1.5 m), about +/- 20% of the mean. Uniquely, in southern California, the year-to-year variations are nearly as big as the total annual precipitation (~0.2-0.3 m), i.e. +/- 70% of the mean.

Relative to the rest of the U.S., southern California experiences the largest year to year swings in annual precipitation totals relative to its average values.

AT UC SAN DIEGO

Calculation using Tropical

Rainfall Measuring Mission

(TRMM) data, as originally performed by Dettinger et

al. 2011 with station data

Potential Predictability of IVT vs. Precipitation

- 31 years of NCEP GEFS hindcast data (1984-2015) during DJF
- 30N-50N, 125-120W
- Potential predictability method treats each ensemble member as a surrogate observed realization (Waliser et al. 2003)
- Potential predictability of IVT exceeds that of precipitation at lead times of 1-15 days

Lavers, Waliser, Ralph and Dettinger, 2016 (GRL)

Center for Western Weather and Water Extremes

Key Research Question

Center for Western Weather and Water Extremes SCRIPPS INSTITUTION OF OCEANOGRAPHY AT UC SAN DIEGO

What is the limit of global subseasonal-to-seasonal (S2S) (here, 1-week to 1-month) prediction skill of atmospheric river occurrence, and how does it vary as a function of season, region, and certain large-scale climate conditions?

Key Applications Question

Can present-day subseasonal-toseasonal (S2S) forecast systems provide benefit to CA water resource management decision makers?

A global, objective algorithm for AR identification

(Guan and Waliser 2015)

- AR detection involves thresholding 6-hourly fields of ERA-I IVT based on the 85th percentile specific to each season and grid cell and a fixed lower limit of 100 kg/ms and checking for the geometry requirements of length >2000 km, length/width ratio >2, and other considerations indicative of AR conditions
- Applied to global hindcast/forecast systems and reanalysis datasets (code and databases available at: <u>https://ucla.box.com/ARcatalog</u>)
- Parameter space AR Date, IVT_{x,y}, Axis, Landfall Location, etc.
- Used for GCM evaluation (Guan and Waliser 2017), comparison to dropsonde data (Ralph et al. 2017, Guan et al. 2018), climate change projections (Espinoza et al. 2018), extratropical and polar vapor transport (Nash et al. 2018), & hindcast/forecast skill assessment (DeFlorio et al. 2018, 2019a; and DeFlorio et al. 2019b [in prep])

Center for Western Weather and Water Extremes

The S2S Project Database (s2sprediction.net)

- Suite of real-time forecasts and several decades of hindcasts from 11 operational forecast models
- Maximum lead time ranging from 32 days to 60 days
- Hindcast ensemble size ranging from 1 to 33
- Variety of forecasting configurations and other model parameters (heterogeneity amongst models)
 - "dataset of opportunity"

AT UC SAN DIEGO

	Time- range	Resol.	Ens. Size	Freq.	Hoo	Host length	Host Freq	Host Size
ECMWF	D 0-46	T639/319L91	51	2/week	On the fly	Past 20y	2/weekly	11
UKMO	D 0-60	N216L85	4	daily	On the fly	1996-2009	4/month	3
NCEP	D 0-44	NI26L64	4	4/daily	Fix	1999-2010	4/daily	1
EC	D 0-32	0.6x0.6L40	21	weekly	On the fly	1995-2014	weekly	4
CAWCR	D 0-60	T47L17	33	weekly	Fix	1981-2013	6/month	33
јма	D 0-34	T319L60	25	2/weekly	Fix	1981-2010	3/month	5
KMA	D 0-60	N216L85	4	daily	On the fly	1996-2009	4/month	3
СМА	D 0-45	T106L40	4	daily	Fix	1886-2014	daily	4
CNRM	D 0-32	T255L91	51	Weekly	Fix	1993-2014	2/monthly	15
CNR- ISAC	D 0-32	0.75x0.56 L54	40	weekly	Fix	1981-2010	6/month	1
HMCR	D 0-63	1.1x1.4 L28	20	weekly	Fix	1981-2010	weekly	10

Jet Propulsion Laboratory

California Institute of Technology

Global Evaluation of Atmospheric River Subseasonal Prediction Skill

Michael J. DeFlorio¹, Duane E. Waliser^{2,3}, Bin Guan^{2,3}, F. Martin Ralph¹, and Frederic Vitart⁴; (*Climate Dynamics* 2019) ¹UCSD/SIO/CW3E, ²NASA JPL/CalTech, ³UCLA, ECMWF⁴

NASA

Jet Propulsion Laboratory

California Institute of Technology

Global climatology of wintertime AR1wk, 1996-2015

Observations: ERA-I

Does ECMWF AR1wk skill exceed climatological skill? Is AR1wk skill modulated by large-scale climate mode activity?

NPac/West U.S. (150W to 125W, 35N to 45N)

 (left) ECMWF AR1wk occurrence forecast skill (ACC) outperforms a reference forecast based on monthly climatology of AR1wk occurrence at week-3 (14d-20d) lead over the North

• AR1wk is largest in midlatitude storm track regions

0.6

0.8

1.0

0.4

AR1wk occurrence

1.2 (#AR days per week)

Center for Western Weather and Water Extremes scripps institution of oceanography

0.2

0

Experimental S2S Forecasting of Atmospheric Rivers over the Western U.S.

Michael J. DeFlorio¹, Duane E. Waliser^{2,3}, F. Martin Ralph¹, Aneesh Subramanian, et al. (2019, in prep) ¹UCSD/SIO/CW3E, ²NASA JPL/CalTech, ³UCLA, U Colorado⁴

ERA-I NDJFM 1996-2015 average number of AR days per week ("AR1wk") for 0, 1-2, 3-7 AR days/week

Center for Western Weather and Water Extremes

Experimental S2S Forecasting of Atmospheric Rivers over the Western U.S.

Michael J. DeFlorio¹, Duane E. Waliser^{2,3}, F. Martin Ralph¹, Aneesh Subramanian, et al. (2019, in prep) ¹UCSD/SIO/CW3E, ²NASA JPL/CalTech, ³UCLA, U Colorado⁴

AR1wk NDJFM Brier Skill Scores: "0 AR days/week" category

Center for Western Weather and Water Extremes

Experimental S2S Forecasting of Atmospheric Rivers over the Western U.S.

Michael J. DeFlorio¹, Duane E. Waliser^{2,3}, F. Martin Ralph¹, Aneesh Subramanian, et al. (2019, in prep) ¹UCSD/SIO/CW3E, ²NASA JPL/CalTech, ³UCLA, U Colorado⁴

Center for Western Weather and Water Extremes

Experimental Multi-Model Atmospheric River Forecast*

Issued on Thursday, March 28, 2018

Contents:

Slide 1-2: "Weather" - Typical presentation of US west coast weather/precipitation forecast over lead times of 1 to 14 days considering only the likelihood of an atmospheric river (AR) occurring on a given forecast day. *Novelty – a weather forecast presented only in terms of AR likelihood.* **Slide 3-5: "week-3" -** US west coast weather/precipitation forecast for week 3 considering the number of atmospheric river days predicted to occur in the given forecast week. *Novelty – an S2S forecast presented only in terms of AR likelihood - specifically for week 3, an extended/long-range or "subseasonal" prediction*

Ensemble Forecast Systems Used

ECMWF (European Centre for Medium-Range Weather Forecasts) forecast system NCEP (National Centers for Environmental Systems) forecast system ECCC (Environment and Climate Change Canada) forecast system

*This is an experimental activity for the 2017-18 and 2018-19 winters. Methodologies and hindcast skill are documented in DeFlorio et al. (2018,2019a,2019b). Further validation of the real-time forecast results is required and underway. This phase of the research includes gathering stakeholder input on the presentation of information – feedback is welcome.

Center for Western Weather and Water Extremes scripps institution of oceanography

T UC SAN DIEGO

POC: Mike DeFlorio (mdeflorio@ucsd.edu)

EXPERIMENTAL AR FORECAST

Week-1 (1-day to 7-day lead)

Experimental AR forecast issued on Thursday, March 28, 2019 by M. DeFlorio, D. Waliser, M. Ralph, A. Goodman, B. Guan, A. Subramanian, and Z. Zhang for an Experimental AR Forecasting Research Activity sponsored by California DWR

Center for Western Weather and Water Extremes

SCRIPPS INSTITUTION OF OCEANOGRAPHY AT UC SAN DIEGO

Contact: Mike DeFlorio (mdeflorio@ucsd.edu)

EXPERIMENTAL AR FORECAST

Week-2 (8-day to 14-day lead)

Experimental AR forecast issued on Thursday, March 28, 2019 by M. DeFlorio, D. Waliser, M. Ralph, A. Goodman, B. Guan, A. Subramanian, and Z. Zhang for an Experimental AR Forecasting Research Activity sponsored by California DWR

Center for Western Weather and Water Extremes

SCRIPPS INSTITUTION OF OCEANOGRAPHY AT UC SAN DIEGO

Contact: Mike DeFlorio (mdeflorio@ucsd.edu)

EXPERIMENTAL AR FORECAST

Week-3 (15-day to 21-day lead)

Experimental AR forecast issued on Thursday, March 28, 2019 by M. DeFlorio, D. Waliser, M. Ralph, A. Goodman, B. Guan, A. Subramanian, and Z. Zhang for an Experimental AR Forecasting Research Activity sponsored by California DWR

Center for Western Weather and Water Extremes

SCRIPPS INSTITUTION OF OCEANOGRAPHY AT UC SAN DIEGO

Contact: Mike DeFlorio (mdeflorio@ucsd.edu)

Summary

- Atmospheric rivers occur globally and influence weather and water extremes.
- Total amount of annual California precipitation is uniquely variable from year to year and is strongly influenced by occurrence or absence of atmospheric rivers.
- S2S (here, week 3-4) forecasting of atmospheric rivers represents a critical decision-making time window for water resource managers.
- Real-time experimental AR occurrence forecasting effort using ECMWF, NCEP, and ECCC data is ongoing (CW3E/JPL partnership), with engagement from NCEP and addition of NASA GMAO data forthcoming
 - Pilot S2S Project for Applications
- Verification of S2S hindcasts of AR1wk (bias, BSS, ROC) is nearly complete (DeFlorio, Waliser, Ralph, Subramanian et al. 2019 in prep), and can be used as skill benchmarks for winter 2017-2018 and 2018-2019 experimental forecasts.
- Examining sources of increased prediction skill at longer lead times e.g. atmospheric ridging events (Peter Gibson, Duane Waliser, Bin Guan, Alex Goodman et al., NASA JPL)

Thank you! mdeflorio@ucsd.edu

Center for V and Water E SCRIPPS INSTITUTI AT UC SAN DIEGO

Center for Western Weather and Water Extremes SCRIPPS INSTITUTION OF OCEANOGRAPHY AT UC SAN DIEGO

cw3e.ucsd.edu