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Objectives

Diagnosing and Understanding Brazilian Subseasonal 
Tropical and Extratropical Processes (DUBSTEP)

• S2S prediction skill for Brazilian precipitation
• Conditional forecast skill for Brazilian precipitation; teleconnections 

from large-scale climate variability

Aim: Assessing prediction skill for sub-seasonal rainfall 
variability in Brazil, including conditional skill based on large-
scale atmospheric circulations.



Motivation
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S2S Data

Model Native 
Resolution

Years 
available Initialisation frequency Ensemble 

members Reference

UKMO (GloSea5-GC2) 0.8° x 0.5° 1993–2015 1st, 9th, 17th, 25th of each month 7 MacLachlan et al., (2015)
NCEP (CFSv2) ~100 km 1999–2010 Daily 4 Saha et al., (2014)
ECMWF (IFS) 0.7° 1998–2017 Twice per week 11 Vitart et al., (2004)

 Evaluation of S2S skill for weekly averaged precipitation in all 4 seasons (DJF, MAM, JJA, SON)
• Lead times of 1-5 weeks
• Weekly averaging increases skill by reducing noise from daily rainfall variability.

 Observations: GPCP (satellite + gauge)
 Analysis Horizontal Resolution: 1.5° × 1.5°
 Challenge: Comparing models with different initialisation dates and ensemble sizes

• Lagged ensembles for NCEP (last 7 days) and ECMWF (last 3 forecasts)
 Common time period of analysis: 1999-2010
 Evaluation of effects of the ENSO and MJO on the precipitation over Brazil in S2S for DJF

• Oceanic Nino Index (ONI) is used for ENSO
• Wheeler–Hendon real-time multivariate (RMM) index for MJO



S2S Rainfall Forecast Skill
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S2S Rainfall Forecast Skill
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cForecast Skill
over Brazil (40°S-20°N, 90-20°W)

ACCBIAS RMSE

• In Bias, ECMWF has dry bias during 
wet seasons but wet bias during the 
dry seasons.

• In terms of RMSE, UKMO’s skill 
deteriorates quicker than the other 
two systems.

• All models show lowest ACCs in JJA, 
which suggests issues in predicting 
rainfall during the dry season.

• Skill is generally highest in ECMWF 
and UKMO and lowest in NCEP

• Models lose useful skill (ACC > 0.5) 
after Week 2.
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Brier Skill Score (BSS)
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• Higher forecast skill for above and below normal precipitation categories in week 1 than normal precipitation 
category. 
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Forecast Skill
over Brazil (40°S-20°N, 90-20°W)
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• Models 
underestimate:

• dry anomalies 
during El-Niño

• wet anomalies 
during La-Niña

• RMSE are lowest in 
ECMWF and the 
highest in UKMO.

• Skill is lower during 
El-Niño than in 
Neutral or La-Niña 
phases in all models.



MJO

• MJO in Phases 8, 1 
and 2  leads to 
precipitation 
anomalies that are:

• wet over SACZ
• dry over SESA

• The precipitation 
anomalies are 
reversed during 
Phases 3, 4 and 5. 

• Precipitation 
suppressed in Phase 0
(inactive MJO). 

GPCP Precipitation Anomalies (DJF)
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NCEP
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Precipitation Anomaly Bias – Week 1

• Strongest errors are observed during MJO Phase 1: dry bias over NWSA & SESA and wet bias over eastern 
Brazil (except ECMWF). 

• Phase 8 has a wet bias over central Brazil.
• Phases 4 and 5 show a wet bias over northern SA and somewhat dry bias over the central Brazil.



Forecast Skill over Brazil (40°S-20°N, 90-20°W)

• Forecast skill decreases 
with lead time in all MJO 
phases.

• Forecast skill highest in 
Week 1 for the observed 
MJO in Phase 1.

• Forecast skill decreases 
with lead time, and 
models usually have no 
skill beyond Week 2.



Conclusions

• Errors might be associated with tropical convection, orography and regional SSTs
Models exhibit large precipitation biases

• Indicating issues in predicting rainfall during the dry season 
Models show lowest skill in JJA season

• S2S rainfall predictions are better during Neutral ENSO conditions 
Models underestimate the strength of the MJO and ENSO teleconnections

• Skill declines with lead time and models mostly lose useful skill after Week 2 
Precipitation errors are well established within the first week of the forecasts

• Forecast skill analysis for Brazilian operational model
• Analysing model skill using CHIRPS dataset over different sub-regions
• MJO teleconnections analysed using model MJO indices

Future work includes
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