

Prospects for subseasonal sea ice prediction at both poles

Workshop on Predictability, dynamics and applications research using the TIGGE and S2S ensembles April 3rd, 2019

Lorenzo Zampieri

Helge F. Goessling Thomas Jung

Iorenzo.zampieri@awi.de Alfred Wegener Institute

Subseasonal to Seasonal Prediction Project

Focus on 6 S2S modelsECMWFCMAUKMOMétéo FranceKMANCEP

12 years of forecasts 1999 - 2010

Forecasts cover the whole seasonal cycle

Characterization goes beyond specific events such as the September minimum

Lead Time [Days]

Spatial Probability Score

Spatial Probability Score

$$SPS = \iint_{A} (p_{f[sic>15\%]} - p_{o[sic>15\%]})^2 dA$$

Goessling, H. F., & Jung, T. (2018). A probabilistic verification score for contours: Methodology and application to Arctic ice edge forecasts. *Quarterly Journal of the Royal Meteorological Society*, **144** (712), 735–743.

OM

OM

Method Summary

UKMO CMA ECMWF MF KMA NCEP Ensemble S2S sea-ice forecasts

Verification against satellite observations using the SPS

Compare forecast SPS to the benchmarks

Assessment of the forecast predictive skill

Indications about errors and biases

Arctic sea ice forecasts (1999-2010)

Zampieri, L., Goessling, H. F., & Jung, T. (2018). Bright prospects for Arctic sea ice prediction on subseasonal time scales. *Geophysical Research Letters* **45**, 9731–9738.

Antarctic sea ice forecasts (1999-2010)

Seasonality of ECMWF skill

Forecasting the 2007 minimum

Summary

Big skill difference among different forecast systems.

Similar model ranking for the two hemispheres.

Evidences of skillful Arctic sea ice forecast up to 1¹/₂ months in advance.

Substantial errors associated with model biases and data assimilation procedure.

A (well formulated) dynamical sea ice model is beneficial to the forecast skills.

Improvements in ECMWF forecast system

Model details

Forecast System	Initialisation Freq.	Ensemble Size	Range	sea ice Model	SIC Assimilated
ECMWF	$\times 2$ weekly	10 + 1	$46 \mathrm{days}$	LIM 2	\mathbf{yes}
UKMO	$\times 4$ monthly	6 + 1	60 days	CICE 4.1	yes
KMA	$\times 4$ monthly	2 + 1	60 days	CICE 4.1	yes
NCEP	daily	3 + 1	44 days	GFDL SIS	yes
MF	imes 2 monthly	14 + 1	61 days	GELATO 5	no
\mathbf{CMA}	daily	3 + 1	60 days	GFDL SIS	no
ECMWF Pres.	imes 2 weekly	single sea ice state	46 days	none	no

The sea ice edge position

Ensemble forecasts

Probabilistic verification metric required

Spatial Probability Score $SPS = \iint_{A} (p_{f[sic>15\%]} - p_{o[sic>15\%]})^2 dA$

The S2S time scale

Prediction forecast timescale

Image from the S2S Promotional Video