Achieving seamless verification across subseasonal time scales from weather to climate

Paul Dirmeyer¹ & Trent Ford²

¹Center for Ocean-Land-Atmosphere Studies **George Mason University** Fairfax, Virginia, USA ²Southern Illinois University Carbondale, Illinois, USA

Workshop... S2S Ensembles – ECMWF – 3 April 2019

How we (still) do forecasting

• Traditional weather forecasts – day-by-day, deterministic or probabilistic, out to about 7 days with current models

How we (still) do forecasting

- Traditional weather forecasts day-by-day, deterministic or probabilistic, out to about 7 days with current models
- Arbitrarily we jump to time-averages after some lead time - Usually step by weeks, months, etc.

How we (still) do forecasting

- Traditional weather forecasts day-by-day, deterministic or probabilistic, out to about 7 days with current models
- Arbitrarily we jump to time-averages after some lead time - Usually step by weeks, months, etc.
- These divisions dictated by the construct of our calendar, not the nature of phenomena – Is this the best? Can we be more flexible?

Workshop... S2S Ensembles – ECMWF – 3 April 2019

• The longer the forecast lead, the wider the "window".

Workshop... S2S Ensembles – ECMWF – 3 April 2019

• The longer the forecast lead, the wider the "window".

Workshop... S2S Ensembles – ECMWF – 3 April 2019

• The longer the forecast lead, the wider the "window".

Workshop... S2S Ensembles – ECMWF – 3 April 2019

• The longer the forecast lead, the wider the "window".

Workshop... S2S Ensembles – ECMWF – 3 April 2019

• The longer the forecast lead, the wider the "window".

Workshop... S2S Ensembles – ECMWF – 3 April 2019

• The longer the forecast lead, the wider the "window".

Workshop... S2S Ensembles – ECMWF – 3 April 2019

• The longer the forecast lead, the wider the "window".

- This is intuitive we measure error relative to the distance to the target.
- Begs the question: what constitutes a successful forecast?

Workshop... S2S Ensembles – ECMWF – 3 April 2019

Seamless Validation (Poisson Weighting) As forecast lead times get longer, precise timing is less of an

As forecast lead times get longer, precise timing issue for useful predictions.

Seamless Validation (Poisson Weighting)

 As forecast lead times get longer, precise timing is less of an issue for useful predictions.

Workshop... S2S Ensembles – ECMWF – 3 April 2019

Weakness of Poisson weighting approach

- The Poisson function has an advantageous shape and behavior for this approach to seamless forecasting, but it could be better.
 - Not flexible its shape is what it is.
 - Even at 1-day lead, it is a blend of forecasts from several lead times, not a deterministic forecast only for day 1.

Weakness of Poisson weighting approach

- The Poisson function has an advantageous shape and behavior for this approach to seamless forecasting, but it could be better.
 - Not flexible its shape is what it is.
 - Even at 1-day lead, it is a blend of forecasts from several lead times, not a deterministic forecast only for day 1.
- Would like to have an approach that transitions smoothly from dayto-day forecasts to a time-average (Poisson \rightarrow Normal distribution).

Workshop... S2S Ensembles – ECMWF – 3 April 2019

Kronecker delta

- The area under the curve of the Poisson function always equals 1, making it ideal as a weighting function.
- The Kronecker delta:

$$\delta_{\tau,k} = \begin{cases} 0 \ \tau \neq k \\ 1 \ \tau = k \end{cases}$$

also has this characteristic, and is effectively the mathematical definition of the weight of a deterministic forecast.

Kronecker delta

- The area under the curve of the Poisson function always equals 1, making it ideal as a weighting function.
- The Kronecker delta:

$$\delta_{\tau,k} = \begin{cases} 0 \ \tau \neq k \\ 1 \ \tau = k \end{cases}$$

also has this characteristic, and is effectively the mathematical definition of the weight of a deterministic forecast.

 Thus, a linear combination of Poisson and Kronecker weighting functions, with weights for each function that sum to 1, is well behaved as a versatile, compound weighting function.

Workshop... S2S Ensembles – ECMWF – 3 April 2019

Blending $P_{\tau,k}$ and $\delta_{\tau,k}$

- We want the deterministic forecast represented by $\delta_{\tau,k}$ to last for some number of days before transitioning to the $P_{\tau,k}$ weighting.
- The 2-parameter Hill equation is ideal for this:

$$H_{\tau} = \frac{1}{\left(\frac{\tau - 1}{\alpha - 1}\right)^{\beta} + 1}$$

- $-\alpha$ determines the transition point (50/50 weighting between $P_{\tau,k}$ and $\delta_{\tau,k}$)
- $-\beta$ gives the abruptness of the transition.
- The compound weight is: $W_{\tau,k} = H_{\tau}\delta_{\tau,k} + (1 H_{\tau})P_{\tau,k}$

Hill, A. V., 1910: J. Physiol., doi:10.1113/jphysiol.1910.sp001386

Workshop... S2S Ensembles – ECMWF – 3 April 2019

Hill equation

- Low β gives smooth transition with lead time, large β yields a sharp transition.
- α is the lead time at which the Hill equation has a value of 0.5. For any given β , larger α also produces a smoother transition.
- α and β can be chosen to give desired effect.

Seamless validation

- Validation becomes more complicated, as there are two time dimensions: validation time and lead (or initialization) time.
 - This should be done anyhow for forecasts with any models that drift (i.e., <u>all</u> dynamical models).
- MERRA-2 temperature (top) and MSWEP precipitation (bottom) examples show how validation time series smooth out with lead time.

Workshop... S2S Ensembles – ECMWF – 3 April 2019

2013-08

2013-09

2013-10

Skill(α, β, τ)

- Obviously skill tends to decrease with lead time, but the transition to time scales means that is not always the case.
- The choice of α and β that gives the best skill scores is not usually the most useful – the goal is not to make models look good.

Atlanta [33.0°N,84.0°W]

CMA forecast skill (ACC) [1999-2010], color shows arithmetic mean along the perpendicular dimension.

0.2

12

0.3

Ensembles

- Approach can be used for ensemblebased skill metrics as well.
- See most of the sensitivity to choices of the Hill equation parameters is in the 1-3 week range.

NCEP CFS RPSS_D [1999-2010]; Black line = purely deterministic forecasts, dashed line = purely Poissonweighted forecasts. Colored lines and spreads for different α and β are across all values of β and α respectively.

Daily Mean Temperature

Minneapolis [45°N, 93°W]

Heat waves

- Event-based statistics require a flexible means of definition for events that can vary with window.
- A forecast 12 days in advance for an event that occurs on day 11 or 13 should not be penalized - it is a useful forecast.

NCEP GEFS probability of detection (POD) [1999-2016]; Black line = purely deterministic forecasts, dashed line = purely Poisson-weighted forecasts.

- Seamless transition from daily to time-averaged forecasts.
- Applies to deterministic or ensemble forecasts.

- Seamless transition from daily to time-averaged forecasts.
- Applies to deterministic or ensemble forecasts.
- Highly tailorable for different applications, user interests.

- Seamless transition from daily to time-averaged forecasts.
- Applies to deterministic or ensemble forecasts.
- Highly tailorable for different applications, user interests.
- Linear combination of Kronecker and Poisson-weighted forecasts can be done a posteriori with various choices of α and β .

- Seamless transition from daily to time-averaged forecasts.
- Applies to deterministic or ensemble forecasts.
- Highly tailorable for different applications, user interests.
- Linear combination of Kronecker and Poisson-weighted forecasts can be done a posteriori with various choices of α and β .
- Requires a more complicated observed climatology to calculate anomalies: two time dimensions.

- Seamless transition from daily to time-averaged forecasts.
- Applies to deterministic or ensemble forecasts.
- Highly tailorable for different applications, user interests.
- Linear combination of Kronecker and Poisson-weighted forecasts can be done a posteriori with various choices of α and β .
- Requires a more complicated observed climatology to calculate anomalies: two time dimensions.
- Open question whether there is an objective approach to optimize the choice of the parameters.
- Large values of β reintroduce the "seam".

Workshop... S2S Ensembles – ECMWF – 3 April 2019

Paul Dirmeyer

Dirmeyer & Ford, 2019: Mon. Wea. Rev., submitted.

