

Increased impact of Arctic observations during Scandinavian Blocking episodes

Jonathan Day, Heather Lawrence, Irina Sandu, Linus Magnusson, Niels Bormann, Mark Rodwell and Thomas Jung (AWI)

j.day@ecmwf.int

© ECMWF February 1, 2019

Linkages to mid-latitudes: what if our forecasts were perfect in the Arctic?

Jung et al. (2014) and Semmler et al. (2018)

Challenge 1: simulating Arctic processes

Challenge 2: observing

• SYNOP • SHIP • PILOT A TEMP A TEMP_B • PROF • METAR • AIRCRAFT DRIBU • SYNOP_B

- SYNOP
- SHIP
- **TEMP**
- AIRCRAFT

Jung et al. (2016)

Challenge 3: Initialisation

Observing System Experiments (OSEs)

 OSEs have been used to determine the importance of extra observations for improving the skill of case studies in mid-latitudes

• Not been done in operational systems with a "full" observing system.

• Hard to know if extra observations will really improve skill in mid-latitudes.

Sato et al. (2016)

Observing System Experiments (OSEs)

OSE's removing polar observations for:

- Microwave (MW)
- Infrared (IR)
- Conventional (Conv)
- GPSRO (bending angles)
- Polar AMVs
- Extra observations during SOPs

Experimental set-up:

2 x 4 months, 2 seasons, TCo399 (25 km)

June – September 2016

December – March 2017/2018 (includes SOP1)

Degraded forecast skill in the North Pole and Northern Mid-latitudes

CECMWF

APPLICATE.eu

Advanced prediction in

Spatial extent of errors

Day 4

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Episodic impacts over North-West Asia

Case Study: initial conditions

2m temperature & MSLP

Case Study: error growth

CECMWF

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

12

Is the impact of the observations also regime dependent?

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Do periods of blocking lead to faster error growth?

Increment Unit: 0.01K Mean: 0.25 RMS: 2.44 Sig: 18% 15 -5 -3 з 5

Conclusions

• Forecast errors associated with denial of Arctic observations during winter significantly impact skill over Northern Asia.

• The impact of Arctic data denial and relaxation on N. Asia is largest during periods of Scandinavian Blocking, when high amplitude waves allow errors to propagate out of the Arctic.

• Arctic observations also play a more important role in constraining the initial state during periods characterised by Scandinavian Blocking, where warm-moist intrusions lead to higher baroclinicity and error growth within the Arctic.

• Could increasing Arctic observation density during blocking episodes improve skill? \rightarrow Possible idea for SOP3.

Upcoming ECMWF workshop: Observational campaigns for better weather forecasts 10-14 June 2019

Key questions:

- How are field campaigns making use of ECMWF data? Are there any obstacles to the use of this data?
- How can observational campaigns help to identify and diagnose problems in models, observation operators, etc.?
- How can knowledge and diagnosis of NWP problems help define future field campaigns?
- How can observational campaigns learn from each other in terms of their usage and diagnosis of ECMWF forecasts?

Deadline for registration and Abstracts: 1 March https://www.ecmwf.int/en/learning/workshops/workshop-observational-campaigns-better-weather-forecasts

Challenges in the use of observations

APPLICATE.eu Advanced prediction in polar regions and beyond

Less conventional data above 70N than Northern mid-latitudes

Also larger model errors & too much confidence in the model in the lowertroposphere

Challenges in the use of observations

Impact of denial and relaxation

