

Impact of regionally increased CO2 concentrations in coupled climate simulations

Tido Semmler, Felix Pithan, Thomas Jung

Everybody knows: Arctic sea ice has been strongly declining over the last 3 to 4 decades

Many studies have investigated the impact of such Arctic sea ice decline on the Northern midlatitudes

But which influence is stronger: from the Arctic to the Northern mid-latitudes or the other direction?

Novel approach: regionally prescribe 4*CO2 concentrations

The tool: AWI-CM 1.1 (CMIP6 version)

- ECHAM 6.3 (from Max Planck Institute) coupled to FESOM 1.4 (AWI ocean model)
- Flexible mesh layout examples:

Experiments

Arctic sea ice volume March

Response in the temperature profile

Winter 2 m temperature response (K)

Regional Arctic CO2 forcing efficient in reducing Arctic sea ice volume – energy remains in the Arctic

Energy transport from extra-Arctic into Arctic efficient: nearly as much sea ice melted in 60Ns compared to glob simulation

Regional Arctic CO2 forcing efficient in reducing Arctic sea ice volume – energy remains in the Arctic

Energy transport from extra-Arctic into Arctic efficient: more sea ice melted per degree Arctic warming in 60Ns compared to glob simulation

Meridional atm. energy transport (PW)

Arctic sea ice volume in March

Response in the temperature profile

Preliminary PAMIP results (exp. 1.3)

piSST minus pdSST (SIC unchanged)

Arctic amplification without Arctic forcing in winter and some extent spring!

Conclusions

Method of regional decomposition of CO2 forcing works – response largely additive. Maybe an experiment design to be considered for APPLICATE / PAMIP?

Above 300 hPa cooling rather than warming (expected!)

Generally despite strong CO2 forcing in the Arctic relatively little happens in the mid-latitudes.

The extra energy in the Arctic forcing experiments largely stays in the Arctic

If forcing only outside the Arctic, the energy transport into the Arctic is strongly increased.

Therefore, even without any Arctic forcing two thirds of the sea ice melt and Arctic Amplification exists!

Winter 500 hPa geopot response (m)

Winter U 300 response (m/s)

Positive anomalies stretching from Gulf of Mexico / Florida to Southern Europe – surrounded by negative anomalies. But small anomalies!

Synoptic activity 500 hPa (m)

Synoptic activity 500 hPa (m)

Redistribution of increase/decrease areas

100

Preliminary PAMIP results (exp. 1.5)

piSIC minus pdSIC (SST unchanged)

Preliminary PAMIP results (exp. 1.2)

piSST / piSIC minus pdSST / pdSIC

Preliminary PAMIP results (exp. 1.6)

fuSIC minus pdSIC (SST unchanged)

Winter 2 m temperature response (K)

Winter 2 m temperature response (K)

4*CO2 globally versus 4*CO2 south of 60N for the first 30 years

HELMHOLTZ

Arctic sea ice concentration response (%)

Arctic sea ice concentration response (%)

Excursion: CMIP6 1%CO2 exp

Yearly 2 m temperature response

4*CO2 north of 60 N for the last 30 years

HELMHOLTZ

Winter 500 hPa geopot response (m)

Arctic sea ice volume

AMOC at 45 N

2 m temperature

2 m temperature

OM

2100

Northern Hemisphere mean temperature

285 L 1900

2000

Year

2050

1950

Mean sea level pressure (hPa)

500 hPa geopotential height (m)

Synoptic activity 500 hPa (m)

Winter U 300 response (m/s)

4*CO2 north ice edge for the last 120 years

3.0

HELMHOLTZ ASSOCIATION 4.0

Arctic sea ice area March

Arctic sea ice area September

Ocean mixed layer depth anomaly

Sea surface height (m)

Ocean temperature response (K) 15 m

Salinity response (psu) 15 m

