

Initial results from the Polar Amplification MIP

APPLICATE 29th Jan 2019, Reading. Rosie Eade & Doug Smith

Atmospheric & Oceanic Linkages

Determine the influence of Arctic climate change on N. Hemisphere mid-latitudes e.g. via retreating sea ice, warming seas and atmosphere. Explore sensitivity to background flow and regional patterns of ice anomalies.

Key Questions

What is the impact of Arctic climate change on mid latitudes? What are the mechanisms of these mid-latitude responses to the Arctic?

Set of large ensemble experiments, **AMIP** and Coupled 14 months (from 1st April 2000), 100 members, Met Office model **HadGEM3 N216**

Different combinations of **prescribed global SIC and SST fields** pdSST_piArcSIC (pre-industrial sea-ice in Arctic <= hist) **pdSST_pdSIC** (present day) **pdSST_fuArcSIC** (future sea-ice in Arctic, rcp8.5), **fuBKSeasSIC**, **fuOkhotskSIC**

Differences of experiments with same SST but different SIC \rightarrow estimate contribution of SIC reduction to polar amplification

- Arctic SIC reduction in different regions may have different impacts
- Projections of SIC show different rates of loss in different regions → impacts may vary over time

Smith et al, 2018, Geosci. Model Dev. Discuss., The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification

CMIP6-PAMIP Sea Ice Loss

$pdSST_fu^*SIC - pdSST_pdSIC$

Reduced SIC around edge in winter; across most of Arctic in summer.

Winter response to reduced Arctic sea ice (DJF) pdSST_fuArcSIC – pdSST_pdSIC

pdSST_fu*SIC - pdSST_pdSIC

SAT

Local response - significant warming (as seen in other studies)

fuArcSIC – pdSIC Met Office Model Local warming, equator-ward shift of jet.

fuArcSIC – pdSIC Model Comparison MO stronger response to AWI, & different sign in stratosphere.

DJF

PAMIP Responses - Arctic

Screen et al, 2018 (90N-0)

Met Office

DJF

Hadley Centre

APPLICATE.eu

Advanced prediction in

polar regions and beyond

fuArcSIC – pdSIC: Why do results vary across models?

Fig. 3 | Effects of Arctic sea-ice loss on winter atmospheric circulation. Boreal winter zonal-mean westerly wind response (coloured shading) to Arctic sea-ice loss in six unique sets of coupled ocean-atmosphere model simulations. The responses have been scaled by the reduction in sea-ice extent in each case (provided in the lower-right corner of each panel in million square kilometres; see Methods). The black contours indicate the baseline climatology (contour interval of 5 m s⁻¹). The simulations presented in **a-f** are described in refs ^{13,22,24,26,26} and ¹⁶, respectively. The panel titles provide the model and protocol (refer to Box 1 for more details) used.

PAMIP Responses - Arctic

Screen et al, 2018

DJF

Hadley Centre

Met Office APPLICATE.eu

Advanced prediction in

polar regions and beyond

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Sea-level pressure response (hPa per 10⁶ km² ice loss)

fuArcSIC – pdSIC: -ve NAO like response Why do results vary across models?

Fig. 2 | Effects of Arctic sea ice loss on winter sea-level pressure. Boreal winter mean sea-level pressure response (coloured shading) to Arctic sea-ice loss in six unique sets of coupled ocean-atmosphere model simulations. The responses have been scaled by the reduction in sea-ice extent in each case (provided in the lower-right corner of each panel in million square kilometres; see Methods). The black contours indicate the baseline climatology (contour interval of 5 hPa). The simulations presented in a-f are described in refs ^{15,22,24,24,26} and ¹⁶, respectively. The panel titles provide the model and protocol (refer to Box 1 for more details) used. Continental outlines are shown in grey.

PAMIP Responses - Arctic

Met Office

DJF

Hadley Centre

FIG. 14. Dependence of Atlantic jet response on the background climatological refractive index difference between middle (25°–35°N) and high (60°–80°N) latitudes at 200 hPa. Gray shading shows the observed range from ERA-Interim and NCEP II.

Model response may depend on background state - RIGHT comparison of AMIP vs CPLD experiments

APPLICATE.eu

Advanced prediction in

polar regions and beyond

- LEFT comparison of jet response vs model refractive index (emergent constraints)

Winter response to reduced SUB-REGIONS of Arctic sea ice (DJF) pdSST_fuArcSIC – pdSST_pdSIC pdSST_fuBKSeasSIC – pdSST_pdSIC (Atlantic) pdSST_fuOkhotskSIC – pdSST_pdSIC (Pacific)

Other studies find opposite U-Wind responses for **Atlantic** vs **Pacific** SIC loss (Atlantic similar to total Arctic)

-0.75 -0.5 -0.25 0.25 0.5 0.75

2 3

-3 -2 -1

pdSST_fu*SIC - pdSST_pdSIC

fuArcSIC

fuBKSeasSIC

fuOkhotskSIC

Shading = difference, Black contours = pdSST_pdSIC, Green contours = 95% significance (2-tailed t-test)

Equator-ward shift of band of max westerly winds for all

- Okhotsk (Pacific) experiment has same response, but weaker

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0

MSLP Consistent pattern for all: N Atlantic has -ve NAO like response

- Weaker response from Okhotsk

- Models get some similar responses
 - Local surface warming
 - Equator-ward shift of tropospheric zonal mean winds
- · Improve understanding of why models respond differently
 - Upper atmosphere responses
 - Sensitivity to sub-region SIC loss
 - Strength of response
- Emerging constraints to compare models, e.g. wind vs refractive index (Smith et al, 2017)
- Additional Experiments to come
 - Coupled
 - Background State

Initial results from the Polar Amplification MIP

APPLICATE 29th Jan 2019, Reading. Rosie Eade & Doug Smith

Thanks for listening. Any questions/comments?

www.metoffice.gov.uk

Left: BKSeas has some constructive interference; Okhotsk destructive as almost opposite phase Right: No such striking differences?

Met Office Hadley Centre Applicate.eu Advanced prediction in polar regions and beyond PAMIP Responses – Sub Regions

pdSST_fu*SIC - pdSST_pdSIC

fuOkhotskSIC

fuBKSeasSIC

Shading = difference, Black contours = pdSST_pdSIC U-Wind

al. 2015

b) E-P flux in Dec-Jan

30

DJ, EPdiv, Sun et

AICE

Climatological Refractive Index Difference

Jet Response = mean U200 (50-60N, 60-0W) Refractive Index Diff = mean (25-35N) – mean (60-80N) Obs box copied from Smith et al, 2017

GPH **Met Office** APPLICATE.eu PAMIP Responses – Sub Regions Advanced prediction in Hadley Centre polar regions and beyond

pdSST_fu*SIC - pdSST_pdSIC

fuArcSIC

fuBKSeasSIC

fuOkhotskSIC

Shading = difference, Black contours = pdSST_pdSIC, Green contours = 95% significance (2-tailed t-test)

Strong local increase, especially at high altitude

- also sig decrease at mid lat surface extending across tropics at high altitude
- weaker response from Okhotsk

EP Flux Met Office APPLICATE.eu PAMIP Responses – Sub Regions Advanced prediction in Hadley Centre polar regions and beyond

pdSST_fu*SIC - pdSST_pdSIC

AICE 300 500 20N 40N 60N 80N 20N 40N 60N 80N -06 -04 -02 0 02 04 06

SAT PANDPRESPONSES – Sub Regions ONDJFM Screen, 2017 Users Sherien-Lapter See OBearfor-Chuchi See OBEARFOR OB

-12 -06 00 06 12 18

d) Archipelago-Baffin Bay

a) Bering Sea

e) Greenland Sea

h) Hudson Bay

1.5 m air temperature (C)

-1

f) Sea of Okhotsk

i) Labrador Sea

Local response significant warming Similar results for other models and regions

-12 -06 00 06

18

pdSST_fu*SIC - pdSST_pdSIC

fuArcSIC

fuBKSeasSIC

fuOkhotskSIC

Shading = difference, Black contours = pdSST_pdSIC, Green contours = 95% significance (2-tailed t-test)

Local warming at pole at surface and high altitudes

Surface warming very localised for fuOkhotsk as only small regions of sic change ~50N.

Screen et al, 2018 (90N-0)

Hadley Centre

DJF

Met Office APPLICATE.eu

Advanced prediction in

polar regions and beyond

Fig. 1 | Effects of Arctic sea-ice loss on winter air temperature. Boreal winter (December-January-February) zonal-mean air temperature response (coloured shading: note the non-linear colour scale) to Arctic sea-ice loss in six unique sets of coupled ocean-atmosphere model simulations. The responses have been scaled by the reduction in sea-ice extent in each case (provided in the lower-right corner of each panel in million square kilometres; see Methods). The black contours indicate the baseline climatology (contour interval of 10 °C). The simulations presented in **a-f** are described in refs ^{50,24,2,3,4} and ⁴⁰, respectively. The panel titles provide the model and protocol (refer to Box 1 for more details) used.

fuArcSIC – pdSIC: Why do results vary across models?