Northern Hemisphere atmospheric response to Arctic summer sea ice loss in CNRM-CM6

> Svenya Chripko Rym Msadek, Emilia Sanchez-Gomez CERFACS/CECI, Toulouse, France

APPLICATE GENERAL ASSEMBLY 2019

WP3 : Atmospheric and oceanic linkages

Arctic sea ice loss : does it affect the mid-latitudes?

Sea ice concentrations

Will Arctic sea ice decrease have an effect on large-scale atmospheric circulation, independently of other external forcings? (e.g. GHGs)

Objective : To isolate the role of Arctic sea ice loss on atmospheric circulation

(CMIP5 multi-model mean, IPCC AR5 WG1 Chap 12)

PRIMAVERA WP5 albedo experiment

PRIMAVERA WP5 albedo experiment

Sea ice responses

Sea ice surface concentration (SIC), PERT - CTL

- Large sea ice loss in autumn
- Not completely recovered in winter (loss on the edges)
- Stronger sea ice loss the 2nd autumn

sig. 90%

Sea ice volume (SIV) per area unit, PERT - CTL

 Largest sea ice volume loss in central Arctic

More SIC/SIV loss the 2nd autumn → stronger atmospheric response expected

Turbulent heat flux response

ONDO

• Positive THF response where sea ice loss

 Strong response in autumn (november) and amplified the 2nd autumn (more SIC/SIV loss)

 Meridional dipole structure (Barents-Kara region)

→ southward advection of warmer air above regions with sea ice loss (Deser et al. 2010, Screen et al. 2013) <u>Turbulent heat flux response (PERT – CTL)</u>

SIC response (PERT – CTL)

(% CTL)

-20 -40 -60 -80 -100

+ upward (lower atm warms)

- downward (upper ocean warms)

- Arctic amplification
- Maximum in autumn (stronger during the 2nd one)
- Significant signal over continents up to mid-latitudes : consistent with previous studies (e.g. Peings et al. 2014)
 - ightarrow Warming over Siberia and North America in autumn
 - → Cooling over central Asia and Western Europe in winter + over central Asia the 2nd autumn

- Arctic amplification
- Maximum in autumn (stronger during the 2nd one)
- Significant signal over continents up to mid-latitudes : consistent with previous studies (e.g. Peings et al. 2014)
 - ightarrow Warming over Siberia and North America in autumn
 - → Cooling over central Asia and Western Europe in winter + over central Asia the 2nd autumn

- Arctic amplification
- Maximum in autumn (stronger during the 2nd one)
- Significant signal over continents up to mid-latitudes : consistent with previous studies (e.g. Peings et al. 2014)
 - ightarrow Warming over Siberia and North America in autumn
 - → Cooling over central Asia and Western Europe in winter + over central Asia the 2nd autumn

- Arctic amplification
- Maximum in autumn (stronger during the 2nd one)
- Significant signal over continents up to mid-latitudes : consistent with previous studies (e.g. Peings et al. 2014)
 - \rightarrow Warming over Siberia and North America in autumn
 - → Cooling over central Asia and Western Europe in winter + over central Asia the 2nd autumn

<u>Surface temperature and turbulent heat flux responses</u> :

are they directly controlled by the sea ice forcing and/or by atmospheric variability?

Dynamical and thermodynamical TAS components

Dynamical adjustment method to isolate the contribution of atmospheric internal variability (by Deser, Terray and Phillips 2016)

• Thermodynamical effect dominates over the Arctic

Dynamical and thermodynamical components might cancel each other (e.g. central Europe and Greenland)
→ weak total response

• JFM : cool dynamical response in Asia (consistent with NAM-) enhanced by the thermodynamical one

 \rightarrow significant cooler temperature over central Asia

Total surface temperature response

Dynamical and thermodynamical TAS components

Dynamical adjustment method to isolate the contribution of atmospheric internal variability (by Deser, Terray and Phillips 2016)

• Thermodynamical effect dominates over the Arctic

Dynamical and thermodynamical components might cancel each other (e.g. central Europe and Greenland)
→ weak total response

• JFM : cool dynamical response in Asia (consistent with NAM-) enhanced by the thermodynamical one

 \rightarrow significant cooler temperature over central Asia

Total surface temperature response

0.8 0.4 0

Dynamical and thermodynamical TAS components

Dynamical adjustment method to isolate the contribution of atmospheric internal variability (by Deser, Terray and Phillips 2016)

• Thermodynamical effect dominates over the Arctic

Dynamical and thermodynamical components might cancel each other (e.g. central Europe and Greenland)
→ weak total response

• JFM : cool dynamical response in Asia (consistent with NAM-) enhanced by the thermodynamical one

 \rightarrow significant cooler temperature over central Asia

Total surface temperature response

-0.8

-1.2

-1.6

-2

Dynamical and thermodynamical THF components

Dynamical adjustment method to isolate the contribution of atmospheric internal variability (by Deser, Terray and Phillips 2016)

Total turbulent heat flux response OND1 ONDO (W.m²) **Dynamical response** 60 OND1 40 20 -20 -40 -60 Thermodynamical response OND0 OND1

Turbulent heat flux response dominated by thermodynamical component (sea ice forcing)

Pressure response

Sea level pressure (contours : climatology)

Geopotential height Z500

• <u>Autumn</u>: strong negative anomaly over the Arctic Ocean due to thermodynamical effect

+ positive Z500 anomalies → Baroclinic response

 <u>Winter</u> : 3 anticyclonic patterns over the polar cap
→ Barotropic response

 <u>2nd autumn</u>: intensification of the Aleutian Low and the Siberian High (consistent with other studies using coupled models : cf. Screen et al. 2018)

Atmospheric response consistent with the NAM- in the middle troposphere the 2nd autumn

Zonal-mean zonal wind response

Troposphere

- Autumn : slight weakening of both sides of the jet stream
- → stronger the 2nd autumn with a significant narrowing of the jet stream (consistent with other studies, e.g. Sun et al. 2015)
 - Winter : weakening of the poleward side of the jet stream
 - \rightarrow slight equatorward displacement

Stratosphere

- Not significant responses in OND0 and JFM1 (strong variability)
- Significant poleward displacement of the polar vortex the 2nd autumn

Modification of cold extreme temperatures in Eurasia

Winter (JFM)

Cold extremes are cooler over

central Asia (~ -1.5°C)

and warmer over Eastern Europe (~ +3°C)

(e.g. Peings et al. 2014)

Summary of autumn and winter atmospheric responses

- Stronger atmospheric response the autumn following the 2nd summer sea ice loss (more SIC/SIV loss)
 - \rightarrow significant narrowing of the jet stream
 - \rightarrow poleward displacement of the polar vortex
 - ightarrow Z500 and dynamical TAS responses consistent with NAM-
- Weakly significant responses in the stratosphere (zonal-mean zonal winds) : suggesting a strong variability
- \rightarrow Interaction mechanism between the troposphere and the stratosphere under investigation
- Cooler cold extremes over central Asia (~ -1.5°C) consistent with the TAS cooling response, and warmer cold extremes over Eastern Europe (~+3°C)

 \rightarrow Prolongation of the simulations to study the 2nd winter response

→ Study of atmospheric response to a more realistic seasonal sea ice forcing (PAMIP experiments, WP3)