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Challenges in climate model evaluation

1. Standard error metrics are often
over-interpreted

2. Model error is not the only cause
for mismatch with observations

3. Dealing with uncertainty
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Normalized distance from observations for temperature and precipitation

[Knutti et al., Geophys. Res. Lett., 2013]



.. but are they

' imated equilibrium cli
getting more
certain?

- Manabe and Wetherald (1967); best estimate and range for different assumptions
T|me - Manabe and Wetherald (1975); best estimate

— Ramanathan et al. (1979); range of different models, Northern Hemisphere only
— Piani et al. (2005); median and 90%

— Raisdnen (2005); median and 90%

- Stainforth et al. (2005); median and 90%

— Forster and Taylor (2006); mean and standard deviation

— Soden and Held (2006); mean and range of all models

— CMIP3 median and range of all models

— CMIP5 median and range of all models

— Sanderson et al. (2011); mean and 90% for one ensemble

— Andrews et al. (2012); mean and range of all models

— Olivié et al. (2012); mean and range of all models

— Geoffroy et al. (2013b); mean and range of all models

— Geoffroy et al. (2013a); mean and range of all models

- Dessler (2013); best estimate and standard deviation of model ensemble
— Sanderson (2013); most likely and 90%

— Forster et al. (2013); mean and 90%

— Chung and Soden (2015); range of all models

— Andrews et al. (2015); mean and range of all models

— Zelinka et al. (2016); null hypothesis

— Caldwell et al. (2016); mean and range of all models

[ ] — Ragone et al. (2016); best estimate without ocean heat transport

— Lucarini et al. (2017); best estimate with ocean heat transport by diffusion
- Proistosescu and Huybers (2017); median and 90%

Inferred from GCMs

0 2 4 6 8 10

Equilibrium climate sensitivity (°C)

[Knutti et al., Nature Geosci., 2017]



Climate models cannot be validated,
but they can sometimes be invalidated

ARTICLE

Verification and validation of numerical models of natural systems is impossible. This is
because natural systems are never closed and because model results are always non-
unique. Models can be confirmed by the demonstration of agreement between observation
and prediction, but confirmation is inherently partial. Complete confirmation is logically
precluded by the fallacy of affirming the consequent and by incomplete access to natural
phenomena. Models can only be evaluated in relative terms, and their predictive value is
always open to question. The primary value of models is heuristic.

Verification, Validation, and Confirmation of
Numerical Models in the Earth Sciences

Naomi Oreskes,* Kristin Shrader-Frechette, Kenneth Belitz

puter program may be verifiable (12).
Mathematical components are subject to
verification because they are part of closed
systems that include claims that are always
true as a function of the meanings assigned
to the specific symbols used to express them
(13). However, the models that use these
components are never closed systems. One

[Oreskes et al., Science, 1994]




Constraining
summer Arctic sea
ice projections

September Arctic sea ice extent (106 km2)
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Challenges in climate model evaluation

2. Model error is not the only cause
for mismatch with observations



Why don’t models and
observations match each other?

September sea-ice extent
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Why don’t models and
observations match each other?

It's the modelers fault

-Physical equations are wrong
-Equations are discretized
-Forcing is not correct 12
-Initial conditions are not correct
-Processes are parameterized
-There are computational errors

September sea-ice extent
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106 km?
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[Orrell et al., Nonlin. Proc. Geophys., 2001]
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Why don’t models and
observations match each other?

- September sea-ice extent

106 km?
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[lvanova et al., Cryosphere, 2014; Zygmuntowska et al., Cryosphere, 2014; Worby et al., J. Geophys. Res., 2008]



Why don’t models and
observations match each other?

- September sea-ice extent

106 km?

i
1980 1985 1990 1995 20002005 20170 2015

o

[lvanova et al., Cryosphere, 2014; Zygmuntowska et al., Cryosphere, 2014; Worby et al., J. Geophys. Res., 2008]



Why don’t models and
observations match each other?

- September sea-ice extent
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[Kay et al., J. Geophys. Res., 2016]
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Why don’t models and
observations match each other?

- September sea-ice extent

106 km?
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[Notz, Phil. Trans. Roy. Soc., 2015]
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Challenges in climate model evaluation

3. Dealing with uncertainty



Comput. Methods Appl. Mech. Engrg. 200 (2011) 2131-2144

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma ==

A comprehensive framework for verification, validation, and uncertainty
quantification in scientific computing

Christopher ]. Roy **, William L. Oberkampf®

2 Aerospace and Ocean Engineering Department, Virginia Tech, 215 Randolph Hall, Blacksburg, Virginia 24061, USA
b Consulting Engineer, 5112 Hidden Springs Trail, Georgetown, Texas 78633, USA

[Roy and Oberkampf, Comput. Methods Appl. Mech. Engrg., 2011]




Classification of uncertainty

Uncertainty in a prediction

/\

« Aleatoric » « Epistemic »
* Due to random effects « Due to ignorance
» (Characterized by a PDF » (Characterized by an interval
(frequentist interpretation) « (Can, in principle, be eliminated

* Irreducible

[Roy and Oberkampf, Comput. Methods Appl. Mech. Engrg., 2011]



Aleatoric vs epistemic uncertainty

in the Sea Ice Outlooks

Models

Upper Bound

Models
Median
Models

Lower Bound

Other contributions

Statistical models

Ocean-sea ice models

Predictions of Average September Sea Ice Extent for 2015

Coupled models
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https://www.arcus.org/sipn/sea-ice-outlook/2015/post-season
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Some food for break-out group discussions

* Do APPLICATE metrics account for aleatoric uncertainty?
- e.g.. observational error, internal variability?

 Can you list all the reasons why your simulated and observed
diagnostics could differ from each other?

« Can models be used to guide the development of future Arctic
observing systems? How?

* What are the model developments that should go in CMIP/?
How do we decide?



“distance” in geometry. Ideally, they should be defined according to a set of axioms too (such as positivity,
triangle inequality, symmetry, nullity). Several types of metrics must be distinguished from each other:

- Standard error metrics are developed in order to check the overall consistency of a model or
prediction system with a reference. Standard error metrics are useful: they put pressure on centers
to be responsive in addressing obvious model biases, but they also allow for tracking the first-
order evolution of model development through time (Gleckler et al., 2008; Reichler and Kim, 2008;
Eyring et al., 2016). Such metrics should be handled by “responsible adults” because they are easily
over-interpreted. For instance, a model may simulate a realistic trend in annual-mean, global-
mean near-surface air temperature, but thanks to the cancellation of major regional biases. Ideally,
standard error metrics metrics should never be computed in isolation (e.g. for one specific
variable) but rather be part of an overall assessment process — this would allow an instant
visualization of the system’s consistency with the reference(s) as a whole.

“The root mean squared error of Arctic sea ice thickness in my
model is 1.2 m over 2004-2008, compared to the ICESat sea ice

thickness dataset.”

(Standard error metric)

From APPLICATE WP1 Model Assessment Plan




