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CMIP models are 

getting better

over time…

CMIP2

(1990s)

CMIP3

(2000s)

CMIP5

(2010s)

[Knutti et al., Geophys. Res. Lett., 2013]



[Knutti et al., Nature Geosci., 2017]

Estimated equilibrium climate

sensitivity from GCMs

… but are they

getting more 

certain?
Time



Climate models cannot be validated,

but they can sometimes be invalidated

[Oreskes et al., Science, 1994]



[IPCC AR5 WG1, Chapter 12]

Projections of September Arctic sea ice extent

Full CMIP5

Subset

Constraining

summer Arctic sea

ice projections
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Why don’t models and 

observations match each other?

model

obs



model

obs

It’s the modelers fault
-Physical equations are wrong

-Equations are discretized

-Forcing is not correct

-Initial conditions are not correct

-Processes are parameterized

-There are computational errors

Why don’t models and 

observations match each other?

[Orrell et al., Nonlin. Proc. Geophys., 2001]
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It’s the observers fault

model

obs

Instrumental errors

Algorithm errors

Assumptions (e.g. hydrostatic)

Sampling errors

[Ivanova et al., Cryosphere, 2014; Zygmuntowska et al., Cryosphere, 2014; Worby et al., J. Geophys. Res., 2008]

It’s the modellers fault

Why don’t models and 

observations match each other?
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model

obs

It’s my fault
No scale-awareness

No definition-awareness

[Kay et al., J. Geophys. Res., 2016]

Why don’t models and 

observations match each other?

It’s the modellers fault It’s the observers fault
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model

obs

It’s my fault
No scale-awareness

No definition-awareness

It’s the modellers fault

Why don’t models and 

observations match each other?

It’s no one’s fault
Internal variability

[Notz, Phil. Trans. Roy. Soc., 2015]

It’s the observers fault
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[Roy and Oberkampf, Comput. Methods Appl. Mech. Engrg., 2011]



Uncertainty in a prediction

« Aleatoric » « Epistemic »

• Due to random effects

• Characterized by a PDF 

(frequentist interpretation)

• Irreducible

• Due to ignorance

• Characterized by an interval

• Can, in principle, be eliminated

[Roy and Oberkampf, Comput. Methods Appl. Mech. Engrg., 2011]

Classification of uncertainty



Aleatoric vs epistemic uncertainty

in the Sea Ice Outlooks

https://www.arcus.org/sipn/sea-ice-outlook/2015/post-season



Aleatoric vs epistemic uncertainty

in the Sea Ice Outlooks

EpistemicAleatoric

https://www.arcus.org/sipn/sea-ice-outlook/2015/post-season
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Some food for break-out group discussions

• Do APPLICATE metrics account for aleatoric uncertainty?
- e.g.: observational error, internal variability?

• Can you list all the reasons why your simulated and observed
diagnostics could differ from each other?

• Can models be used to guide the development of future Arctic
observing systems? How?

• What are the model developments that should go in CMIP7? 
How do we decide?



From APPLICATE WP1 Model Assessment Plan


