Diagnostics for assessing changes in the mid-latitude atmospheric dynamics

Julien Cattiaux¹

+ Hervé Douville¹, Thomas Oudar¹ & Yannick Peings²

Centre National de Recherches Météorologiques, Toulouse, France.
University California Irvine, CA, USA.

julien.cattiaux@meteo.fr | @julienc4ttiaux

APPLICATE General Assembly, Reading, UK | January 2019

APPLICATE context

WP1: Weather and climate model evaluation.

> Task 1.2.3: Development of metrics that describe [Arctic / mid-latitudes] linkages in atmosphere and ocean and implementation in ESMValTool.

>> Deliverable 1.2: Provision of process-focused, user-relevant and Arctic linkages metrics through ESMValTool (M24). Submitted in Nov 2018: https://www.overleaf.com/read/pghsnbhtdxkp

CNRM contribution: collect, develop and provide diagnostics/metrics for mid-latitude atmospheric dynamics and linkages with the Arctic, both for model evaluation and assessment of future changes.

Motivation

- . The mid-latitude surface weather is primarily driven by the atm. dynamics.
- Mean state (jet stream, surface westerlies) + quasi-chaotic variability.

Example: Z500 January climatology

+ Z500 January 2003

Plotted from ERA-Interim data.

Need for diagnostics that synthesize the various features of the dynamics.

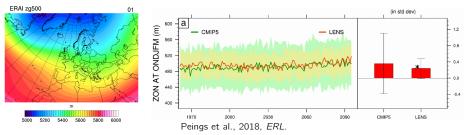
Motivation

- . The mid-latitude surface weather is primarily driven by the atm. dynamics.
- . Mean state (jet stream, surface westerlies) + quasi-chaotic variability.

Example: Z500 January climatology + Z500 January 2003 (anomalies)

Plotted from ERA-Interim data.

Need for diagnostics that synthesize the various features of the dynamics.


Large-scale westerly flow

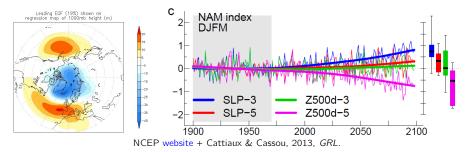
• Several simple indices have been proposed in the literature to quantify the strength of the large-scale westerly flow.

> Zonal wind index = average of zonal wind. Francis and Vavrus (2012), Barnes and Polvani (2015), Zappa and Shepherd (2017).

> Zonal geopotential index = mid- vs high-latitude difference of geop. height. Woollings (2008).

> Zonal SLP index = mid- vs high-latitude difference of SLP. Li and Wang (2003).

Example: Changes in the North-Atlantic zonal Z500 index

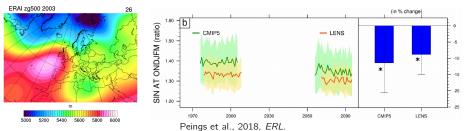

Inter-annual variability

. The dominant mode of atm. variability (the NAM/NAO) explains \sim 30 % of variance of wintertime European temperatures.

> Station-based index = difference of SLP between Lisbon and Reykjavik. Hurrell (2003).

> PCA-based index = principal component analysis of SLP or Z500 anomalies. Miller et al. (2006), Cattiaux and Cassou (2013).

Example: NAM/NAO pattern obtained by PCA (EOF1) + changes in the index (PC1)



Jet stream / daily flow trajectory

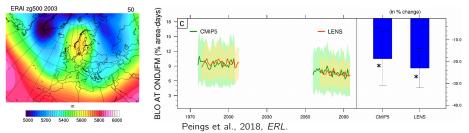
• At synoptic scale, the variability of the eddy-driven jet stream / waviness of the westerly flow drives the surface weather.

> Jet stream analysis = identification of the jet from low-tropospheric zonal wind; position/speed = latitude/value of the max wind – width = latitudes at half of the max wind. Woollings et al. (2010), Barnes and Polvani (2013, 2015).

> Daily flow analysis = identification of the flow from an iso-contour of Z500; sinuosity index = length of the trajectory divided by length of the straight line, monthly amplitude = monthly range of latitudes encompassing daily trajectories. Barnes (2013), Cattiaux et al. (2016), Vavrus et al. (2017), Peings et al. (2018).

Example: Changes in the North-Atlantic sinuosity index

^{6/12}

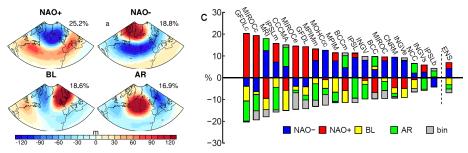

Specific patterns: blockings

• Persistent high-pressure systems that temporarily block the westerly flow; in Europe, associated with cold spells in winter and heat waves in summer.

> 1D blocking index = identifies reversals in the daily Z500 meridional gradient. Tibaldi and Molteni (1990).

> 2D blocking index = same as 1D but with latitudinal dependence. Scherrer et al. (2006).

> Blocking tracking algorithm = tracks anomalies of high-tropo. potential vorticity. Schwierz et al. (2004), Croci-Maspoli et al. (2007a, 2007b).



Example: Changes in the North-Atlantic 1D blocking index

Specific patterns: weather regimes

. Preferred circulation patterns whose frequencies of occurrence explain up to \sim 60 % of variance of the wintertime European temperatures.

> North-Atlantic WRs = classification of daily SLP or Z500 anomalies into 4 regimes using the *k-means* clustering algorithm. Vautard (1990), Cassou (2008), Cattiaux et al. (2013).

Example: WR patterns + CMIP5 changes in frequencies of occurrence

Cattiaux et al., 2013, Clim. Dyn.

Linkages – 1/2

. The mid-latitude dynamics is controlled by the equator-to-pole T gradient, which is modified by climate change, differently at surface and aloft.

> Tug-of war between upper-tropospheric tropical warming & polar amplification.

Large-Scale Dynamics and Global Warming

Isaac M. Held Geophysical Fluid Dynamics Laboratory/ NOAA, Princeton University, Princeton, New Jersey

Abstract

Predictions of future climate change raise a variety of issues in large-scale atmospheric and oceanic dynamics. Several of these are reviewed in this essay, including the sensitivity of the circulation of the Atlantic Ocean to increasing freshwater input athigh latitudes; the possibility of greenhouse cooling in the southmer oceans; the sensitivity of monsconal circulations to differential warming of the two hemispheres; the response of midlatitude storms to changing temperature gradients and increasing water vapor in the atmosphere; and the possibile importance of positive feedback between the mean winds and eddy-induce heating in the polar stratosphere.

Held, 1993, BAMS.

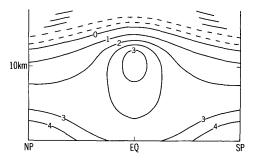


Fig. 6. A schematic of the equilibrium annual mean temperature response to a doubling of CO₂, as typically predicted by GCMs, emphasizing the maxima at upper-tropospheric levels in the tropics and at low levels in the polar regions. Polar amplification is present only in winter.

Linkages – 1/2

. The mid-latitude dynamics is controlled by the equator-to-pole T gradient, which is modified by climate change, differently at surface and aloft.

> Tug-of war between upper-tropospheric tropical warming & polar amplification.

Large-Scale Dynamics and Global Warming

Isaac M. Held Geophysical Fluid Dynamics Laboratory/ NOAA, Princeton University, Princeton, New Jersey

Abstract

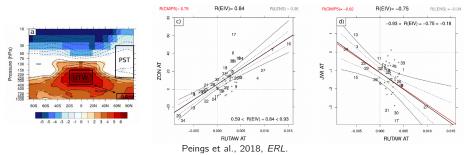
Predictions of hutre climate change raise a variety of issues in large-scale atmospheric and ocamic dynamics. Several of these are reviewed in this essay, including the sensitivity of the circulation of the Altantic Ceant ioncreasing freshwater input athigh latitudes; the possibility of greenhouse cooling in the southern oceans; the sensitivity of monsconal circulations to differential warming of the two hemispheres; the response of midlatitude atoms to changing temperature gradients and increasing water vapor in the atmosphere; and the possible importance of positive feedback between the mean winds and eddy i-induced heating in the polar stratosphere.

Held, 1993, BAMS.

The dominant wintertime baroclinic eddies are coherent through the depth of the troposphere in midlatitudes. As a result, it is unclear whether the eddies would respond primarily to the decrease in lower-tropospheric temperature gradient or the increase in the upper-tropospheric gradient. (In the

Linkages – 2/2

• Several diagnostics have been proposed to describe some of the potential drivers of changes in the Northern mid-latitude dynamics.


> In the tropics: upper-tropospheric warming (UTW), Hadley cells poleward expansion, changes in SST patterns.

> In the mid-latitudes: changes in SST meridional gradients.

> In the Arctic: Arctic Amplification (AA), decrease in Arctic sea ice extent/volume, changes in polar vortex strength.

Cohen et al. (2014), Manzini et al. (2014), Zappa and Shepherd (2017), Peings et al. (2018).

Example: changes in zonal index & flow amplitude correlated with the ratio UTW/AA

Conclusions and outlook

Conclusions and outlook

This collection of diagnostics (existing + a few novel) is non-exhaustive. Wave-number analysis, storm tracks, seasonal linkages with Arctic sea-ice extent or Siberian snow cover, etc. (see D1.2 document).

These atmospheric *diagnostics* can be turned into *metrics* since reference products are generally available through reanalyses. Used at CNRM for the evaluation of CNRM-CM6-1 (see Thomas Oudar's talk).

These diagnostics have been coded using common programming languages (CDO, NCO, R, NCL) and can easily be shared on demand. Generic shell syntax: ./<diagnostic>.sh <ifile(s)> <ofile(s)> .

Conclusions and outlook

This collection of diagnostics (existing + a few novel) is non-exhaustive. Wave-number analysis, storm tracks, seasonal linkages with Arctic sea-ice extent or Siberian snow cover, etc. (see D1.2 document).

These atmospheric *diagnostics* can be turned into *metrics* since reference products are generally available through reanalyses. Used at CNRM for the evaluation of CNRM-CM6-1 (see Thomas Oudar's talk).

These diagnostics have been coded using common programming languages (CDO, NCO, R, NCL) and can easily be shared on demand. Generic shell syntax: ./<diagnostic>.sh <ifile(s)> <ofile(s)> .

Next steps include:

> evaluate multi-model ensembles from the upcoming CMIP6 (Task 1.3) and PAMIP (WP3) experiments;

> investigate how these diagnostics/metrics can be used as emergent constraints to reduce future uncertainties in climate projections (Task 1.5);

> implement selected diagnostics into ESMValTool and/or think about alternative and possibly more efficient ways to share codes (to be discussed this week).

References

Barnes, E.A. and L.M. Polvani (2013), Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models, *J. Clim.*

Barnes, E.A. and L.M. Polvani (2015), CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship, *J. Clim.*

Cattiaux, J. and C. Cassou (2013), Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences, *Geophys. Res. Lett.*

Cattiaux, J. et al. (2013), European temperatures in CMIP5 : origins of present-day biases and future uncertainties, *Clim. Dyn.*

Cattiaux, J. et al. (2016), Sinuosity of midlatitude atmospheric flow in a warming world, *Geophys. Res. Lett.*

Cohen, J. et al. (2014), Recent Arctic amplification and extreme mid-latitude weather, *Nature Geoscience*.

Francis, J.A. and S.J. Vavrus (2012), Evidence linking Arctic amplification to extreme weather in mid-latitudes, *Geophys. Res. Lett.*

Hurrell, J.W. et al. (2003), The North Atlantic Oscillation: climatic significance and environmental impact, *AGU book*.

Manzini, E. et al. (2014), Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling, *J. Geophys. Res.*

Peings, Y. et al. (2018), Projected squeezing of the wintertime North-Atlantic jet, Environ. Res. Lett. Tibaldi, S. and F. Molteni (1990), On the operational predictability of blocking, *Tellus A*.

Woollings, T. (2008), Vertical structure of anthropogenic zonal-mean atmospheric circulation change, *Geophys. Res. Lett.*

Woollings, T. et al. (2010), Variability of the North Atlantic eddy-driven jet stream, Q.J.R.M.S.

Zappa, G. and T.G. Shepherd (2017), Storylines of atmospheric circulation change for European regional climate impact assessment, *J. Clim.*