

Norwegian Meteorological Institute

Experiments on Splitting User Interface and Data Handling in Diana

MET Norway / Alexander Bürger 15.10.18

Digital Analysis

- meteorological workstation software
 - MET Norway, SMHI, ...
 - forecasters + researchers
 - GUI and batch versions
 - perl interface
- implemented using C++ + Qt
- open source:
 github.com/metno/diana
- connected to other forecaster applications via network protocol
 - ted, modfly, mimage, ...

Handling huge model outputs

- model size is continuously increasing
- forecasters cannot wait
 - pilots or journalists want answers now
 - efficiency has to increase
 - waiting is boring and annoying

Today, everything is remote

- complete diana application runs remotely on dedicated servers
 - VirtualGL + ssh
 - slow startup, big latency for GUI elements
 - difficult integration (sound, printers, "disk")
 - everything breaks when the ssh tunnel breaks
 - it can hang because of network, io, bug

Partly local, partly remote?

- · idea: split
 - GUI local
 - data servers (possibly) remote
- many possible server configurations
 - several servers, one per model?
 - caching proxies, selecting fast / alive upstream server

Dublin

Birmingham

London

Helsinki

Tallinn

Riga

Warszawa

lorwegian leteoroloaical

nstitute

Vilnius

Минск

Київ

Stockholm

København

Berlin

Praha

Hamburg

Amsterdam

Санкт Петер

- ..
- one server handles multiple users
 - better caching
 - fewer reprojection calculations

Why not WMS / WPS / ...?

- \cdot typical use
 - either known model + reference time + field + style
 - or step by step model, reference time, field, style
- · WMS: huge capabilities document
 - 50 models
 - each has 20 reference times
 - each has 50 fields
 - (each field has 50 style options)
 - 50000 layers
 - how often to reload?
- · WPS: maybe, later
- possibility for WMS/WPS frontends
- · evolution not revolution, for now
 - stay close to current implementation for the experiment

Modeller meps	Min,max	Størrelse	Radius
MEPS_det_extracted	None 🗧	100%	100%
MEPS_det_pp	Gridlinjer	Av	🗧 🗆 Gridverdi
MEPS_det_ppalgs MEPS_det_t2m500m	Glatte linier	Av	
Referansetid	Glatte felt	Av	•
2018-10-15T12:00:00			
Feltgrupper	Tidsavvik	0 time(r)	•
Bakke 🗧 🗧 🗹 Predefinerte plot	Tidsdiff.	+/-0 time(r)	· ·
Felter MSLP	Udefinert	Umarkert	\$
Tendens	255:255:255:255 ::	- 1	i – :
T.2M	Ramme	S Null-linje	
VIND.10M Valgte felt	🖉 Tall på linje	100%	: 0 :
MEPS_det_pp MSLP 2018-10-15T12:00:00	Tabell	Repetere	·····
MEPS_det_pp T.2M 2018-10-15T12:00:00	Palett		‡ Auto
Slett Minus Kopi	Palett (-)		\$ Auto
	Mønster	Av	\$ Auto \$
+ Slett alt Standard Modell	Alfa	255	
Enhet celsius 2m	Basisverdi	Min	Max
Plottetype contour :	0 ÷	Av	¢ Av ÷
	Verdier		Log
Linjefarge red 🛟	Ekstra konturlinjer		
Linjetykkelse — 1 🛟	Linjefarge	Av	-
Linjetype — 🛊	Ekvidistanse	2	\$
Ekvidistanse 2	Linjetykkelse	- 1	\$
Tetthet Auto	Linjetype	-	\$
	Basisverdi	Min	Max
Enhet 🗘 Nivā Type	0 *	Av	- Av -

All beginnings are difficult

- · Diana is not "new" (born 1999 or earlier)
- · lots of good stuff
- · lots of mixed responsibilities
- lots of preparations before starting splitting-ui-and-data experiment
 - even if the experiment fails, this is good

data

GUI

Experiments so far

- · restricted to model data (FIELD)
- · one client, multiple servers
 - serving data or images
- fetching data / images in multiple threads
- some challenges
 - requirements: "as now or similar in every detail"
 - lack of tests
 - multi-threading problems
- based on GRPC simple, but not good for our purpose

oloaical

Preliminary results

- · it works, somehow and sometimes, surprisingly
- display size is also increasing continuously
 - 2kx2k pixel ARGB32 image = 16MB
 - · 0.16s on a 100MB/s network
 - might be smaller or larger than model
 - 1 field might need several images, one per layer
 - 1 field needs data only once
- \cdot some things are slow
 - 30ms or more to compress image to PNG
 - 24ms latency Oslo Tromsø (good conditions)

Dublin

lsinki Санкт-Петер

Минск

Київ

Tallin

lorwegian Ieteorological

nstitute

København

- must fetch in parallel, without roundtrips
- very slow but still functional over 200kB/s
 VPN WLAN Oslo Tromsø Oslo

Side effects & future

- · possibility for different clients
 - WMS server might use diana data servers as backend
 - lightweight client might offer a simplified user interface
- · possibility for different servers
 - servers in multiple data centers
 - servers coming and going
 - serve from data center until model results are copied, then switch to "local" server
 - servers in other languages than C++
 - servers doing some processing
- \cdot diana application does not die if the network is slow or broken
- · need to solve some issues before testing
- \cdot need to evaluate possible optimisations