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The importance of the background error covariance matrix (B)

(anonymous authors)

“An accurate specification of the statistics of background errors is a
fundamental prerequiste of any effective data assimilation

scheme...”

“The success of a data assimilation system relies heavily on the
characterization of the background errors statistics...”

“Specification of the background error covariances is complex and
its importance cannot be overestimated...”

...

Earth System Assimilation, ECMWF Seminar – 10-13 September 2018



Outline

B basics

B modelling

Using ensembles to define a flow-dependent B

Concluding remarks

Earth System Assimilation, ECMWF Seminar – 10-13 September 2018



Outline

B basics

B modelling

Using ensembles to define a flow-dependent B

Concluding remarks

Earth System Assimilation, ECMWF Seminar – 10-13 September 2018



The importance of B illustrated algebraically

I Consider the inner loop problem of incremental variational DA:

min
δx

J [δx] =
1

2
δxT B−1 δx︸ ︷︷ ︸

Jb

+
1

2
(G δx− d )TR−1(G δx− d )︸ ︷︷ ︸

Jo

where d = y − G(xb) is the p-dimensional innovation vector.
I The exact minimizing solution is

δxa = BGT
(
GBGT + R

)−1

d︸ ︷︷ ︸
β

I If ri are the columns of BGT then

δxa = BGTβ =
(

r1 . . . ri . . . rp
)


β1
...
βi
...
βp

 =

p∑
i=1

βiri.

I The solution space is spanned by the columns of BGT ≈ E[ ε b(Gε b)T ].
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What are the issues when specifying B in Earth System DA?

I B is a huge matrix (O(1014)−O(1018) elements) that is impossible to
store and manipulate explicitly.

I There is not enough reliable information to specify all its elements anyway.

I B is inhomogeneous, anisotropic, multivariate and flow-dependent, which
complicates its specification considerably.

I Ensemble DA is a practical and effective way to obtain flow-dependent
information about B.

I Simplifying assumptions and methods are essential to reduce sampling
error in ensemble B estimates and to allow computationally efficient
implementations of B in DA algorithms.
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What are the issues when specifying B in Earth System DA?

I Practical methods to construct B must preserve its symmetric and
positive (semi-)definite (SPD) attributes.

I This can be ensured numerically by constructing B as a product UUT

where U is generally a rectangular matrix (Parrish & Derber 1992).

I In variational DA, U and UT are specified as operators, through a control
variable transform and the adjoint of this transform (Lorenc 2003a):

δx = Uv and v∗ = UTδx∗

I U is used for preconditioning and randomization applications.

I B plays a fundamental role in preconditioning variational DA
minimization algorithms (Gürol et al. 2014).

I Most B-preconditioned minimization algorithms do not require
(thankfully!) specification of B−1.
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B from a coupled DA perspective

I Consider B for a coupled system (e.g., atmosphere (a) and ocean (o)):

B =

(
Baa Bao

BT
ao Boo

)

I Specifying the within-component covariances (Baa, Boo) is hard.

I Specifying the cross-component covariances (Bao) is even harder!

I These are the covariances that would allow an observation from one
component to influence the analysis of the other component.

I How to deal with different scales, different cross-component balance
relationships, and different grids?

I A coupled model ensemble can give you information about Bao, but how
do you localize the covariances across the interface?
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Representing 4D covariances implicitly with 4D-Var

I In 4D-Var, B is implicitly propagated within the assimilation window by
the linearized model operator M and its adjoint MT.

I The 4D background error covariance matrix, on the interval t0 to tn, is
implicitly given by (Lorenc 2003a):

P = M BMT

where

M =


I

M(t0, t1)
...

M(t0, tn)



I If M is a linearized coupled model then the 4D covariances will be
strongly coupled even if B has no cross-component covariance (Bao = 0).

I E.g., if n = 1 and M = M(t0, t1) then

P =

(
B BMT

MB MBMT

)
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Representing 4D covariances implicitly with 4D-Var

Zonal wind increment produced from a single zonal wind observation at the
start (left panel) and at the end (right panel) of a 6hr 4D-Var window.

(From Clayton et al. 2013)
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Multivariate covariances using a balance operator

I A standard technique to account for multivariate covariances in
variational DA is to transform the model state variables (x) into a new
set of (analysis) variables (w) whose cross-covariances are much weaker
than those of the original state variables (Derber & Bouttier 1999).

I The remaining cross-covariances are usually neglected so that B becomes
block-diagonal (strictly univariate) with respect to w.

I The balance operator (Kbal) is the inverse transformation from analysis
variables back to state variables.

I It is constructed such that when linearized it forms a lower triangular
matrix (Kbal):

B = Kbal Σ C Σ︸ ︷︷ ︸
B(w)

KT
bal
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Example of a nonlinear balance operator for ocean DA

T = T
S = KS (T ) + SU

η = Kη (T, S) + ηU
u = Ku(T, S, η) + uU

v = Kv (T, S, η) + vU

 x = Kbal(w)

I Water masses (temperature, salinity) are approximately conserved (KS ):

S ≈ S(T ) (nonlinear T-S relation)

I Sea-surface height is related to density variations below the surface (Kη ):

η ≈ −
∫ 0

zref

(ρ/ρ0) dz (dynamic height)

ρ = ρ(T, S) (nonlinear equation of state)

I Ocean currents are related to horizontal pressure gradients (Ku ,Kv ):

u ≈ 1

ρ0f
k̂×∇p (geostrophic balance)

p(z) = −
∫ 0

z′=z
ρ gdz′ + ρ0gη (hydrostatic balance)
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Multivariate covariances using a balance operator

3D-Var DA of a single +ve SSH innovation (•) at the equator

a) T increment at equator
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b) S increment at equator

 

-0.6-0.4-0.2

b) S increment at equator

 

140W 120W 100W 80W
Longitude

 

 

200

150

100

50

0

D
e
p

th
(From Weaver et al. 2005)

I To increase SSH, heat is added at the level of the thermocline, and salt is
removed/added above/below the salinity maximum to approximately
preserve water mass.

I The balance operator produces increments that are multivariate,
anisotropic and flow dependent.

• •
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Specifying the correlation block-matrix operators in C

I Applying the correlation operator C is the most computationally
demanding component of the B model.

I We need to be able to perform efficient matrix-vector products with
the block-matrix components of C.

I Standard techniques in atmospheric variational DA:
I Spectral/wavelet transform (Fisher 2003)
I Recursive filter (Purser et al. 2003)

I Issues: regular grid required; complex boundaries difficult to handle;
scalability

I Other (grid-point) techniques:
I Diffusion operator (Weaver & Courtier 2001)
I Explicit convolution (Gaspari & Cohn 1999; B. Ménétrier, unpublished material)

I Issues: cost; memory
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Implicit diffusion-based correlation operators

I Define Cψ0 , for some ψ0 , to be the solution of the elliptic equation

(1−∇ · κ∇)MψM = ψ0 (1)

where M is a positive integer and κ is a scale tensor.
I Solutions to Eq. (1) on Rd or S2, subject to appropriate boundary

conditions, are covariance operators.
I The associated covariance functions are closely related to those from the

Matérn class (Guttorp and Gneiting 2006).
I Eq. (1) can be interpreted as an implicitly formulated diffusion operator

acting over M pseudo-time steps of unit length, and with κ the diffusion
tensor (Weaver & Mirouze 2013).

I Covariance operators (stochastic PDEs) based on Eq. (1) have been
studied independently in fields outside DA:

I Spatial statistics (Lindgren et al. 2010)
I Seismic inversion (Bui-Thanh et al. 2013)
I Uncertainty Quantification (Gmeiner et al. 2017)

I More general PDEs can be used to represent a wider class of covariance
functions (e.g., oscillatory).
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Correlation functions modelled by implicit diffusion on S2

Correlation functions c(r) with constant κ = L2I.

(
1− L2∇2

)M
c(r) = γ δ(r)

(
1− ρ1L2∇2 + L4∇4

)2
c(r) = γ δ(r)

(From Weaver & Mirouze 2013)
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Matrix formulation of implicit diffusion correlation models

I In factored form, the correlation matrix is

C = N L1/2W−1(L1/2)T N

I W contains grid-dependent weights.
I L1/2 ←→

(
1−∇ · κ∇

)−M/2 (self-adjoint w.r.t. W inner product).
I N is a diagonal normalization matrix.

I How to estimate the elements of N accurately and cheaply when κ is
flow dependent? Different methods have been proposed, but none
completely satisfactory.

I We can evaluate L1/2ψ0 by solving in sequence M/2 sparse linear SPD
systems:

Aψ1 = ψ0

Aψ2 = ψ1

...
Aψ

M/2
= ψ

M/2−1


I Possible solvers: direct; multigrid; 1D approach (cf. recursive filter);

iterative (polynomial-based).
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1D approach

I Approximate the 2D/3D operator (L) as a product of simpler 1D
operators (“recursive filters”):

L1/2 ≈ L
1/2
1 L

1/2
2 L

1/2
3

I The resulting algorithm involves small, sparse SPD matrices that can be
inverted efficiently using Cholesky decomposition.

I Drawbacks with the method: gets complex when accounting for general
covariances; can produce numerical artefacts near complex boundaries;
scales poorly on massively parallel machines.

(a) 2× 1D (b) 2D
(From Weaver et al. 2016)
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Matrix formulation of implicit diffusion correlation models

I In factored form, the correlation matrix is
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iterative (polynomial-based).
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The Chebyshev iteration solver for correlation modelling

I The Chebyshev iteration (CI) is a linear solver that requires a guess and
the extreme eigenvalues of A as input.

I For implicit diffusion, CI has similar convergence properties to conjugate
gradients (Weaver et al. 2016).

I No global MPI communications (scalability bottleneck) required.
I It can also be used to solve a nonsymmetric version of the linear system

to allow parallelization in “time” (M) (Weaver et al. 2018).
I It can be applied with a fixed number of iterations (K) to enforce

machine precision symmetry (using the solver and its adjoint).
I A strict convergence criterion (large K) is not required to get an

adequate solution.

(c)K=4 (ε=10−1) (d)K=13 (ε=10−3) (e)K=43 (ε=10−10)
(From Weaver et al. 2016)
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Diffusion-based correlation modelling on unstructured meshes

I Solve the diffusion equation using a finite-element method.

I A method appropriate for modelling correlations in R as well as B.

I The unstructured mesh below is constructed from satellite
observation locations (SEVIRI).

(From O. Guillet, PhD thesis CERFACS/Météo-France)
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Diffusion-based correlation modelling on unstructured meshes

Diffusion-based correlations evaluated on an unstructured mesh using a
finite-element method.

(From O. Guillet, PhD thesis CERFACS/Météo-France)
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Specifying the correlation block-matrix operators in C

I Applying the correlation operator C is the most computationally
demanding component of the B model.

I We need to be able to perform efficient matrix-vector products with
the block-matrix components of C.

I Common techniques in atmospheric variational DA:
I Spectral/wavelet transform (Fisher 2003)
I Recursive filter (Purser et al. 2003)

I Issues: regular grid required; complex boundaries difficult to handle;
scalability

I Other (grid-point) techniques.
I Diffusion operator (Weaver & Courtier 2001)
I Explicit convolution (Gaspari & Cohn 1999; B. Ménétrier, unpublished material)

I Issues: cost; memory
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Explicit convolution

I The computational cost of evaluating an explicit convolution integral is
prohibitive on a high-resolution grid (cost is O(n2) where n is the number
of grid points).

I The cost remains high even with compactly supported (space-limited)
correlation functions (Gaspari & Cohn 1999).

I To limit the computational cost, we can approximate C on a subgrid; i.e.,
using a subset of ns � n points of the model grid.

I We define the correlation matrix as

C = N S Cs STN

I S is an interpolation from the subgrid to the model grid.
I Cs = UsUsT is a convolution matrix on the subgrid.
I N is a diagonal normalization matrix (S Cs ST does not have

diagonal elements equal to one, even if Cs does!).

I The convolution function will be distorted if the subgrid density is too
coarse compared to the convolution length-scale.
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Convolution on a subgrid

Convolution function on model grid

Model grid (blue)
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Convolution on a subgrid

Subsampling: 1 point over 3

Model grid (blue) and subgrid (red)
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Convolution on a subgrid

Subsampling: 1 point over 6

Model grid (blue) and subgrid (red)
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Convolution on a subgrid

Subsampling: 1 point over 12

Model grid (blue) and subgrid (red)
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Convolution on a subgrid

Subsampling: 1 point over 15

Model grid (blue) and subgrid (red)
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Explicit convolution

Normalized Interpolated Convolution from an Adaptive Subgrid
(NICAS)1

I Use the standard compactly supported convolution function of Gaspari &

Cohn (1999) (Eq. (4.10)) with heterogeneous normalized distances:

I d′ij =
dij√

(r2i + r2j )/2
(distance-based)

I d̃′ij =

j−1∑
k=i

d′k,k+1 (network-based)

I The subgrid is locally adapted to account for the convolution length-scale.
I Local MPI communications are performed on the subgrid (no global MPI

communications).
I A particularly efficient method when the convolution length-scales are

large (e.g., as typically the case with localization).
I Complementary to the diffusion approach, which is more efficient for

small length-scales.
1Part of the “Background error covariance on Unstructured Mesh Package”

(BUMP); B. Ménétrier, https://github.com/benjaminmenetrier/bump
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Length-scale and mesh density

Homogeneous convolution length-scale → homogeneous subgrid

(Courtesy of B. Ménétrier)
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Length-scale and mesh density

Heterogeneous convolution length-scales → heterogeneous subgrid

(Courtesy of B. Ménétrier)
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Length-scale and mesh density

Convolution with a homogeneous length-scale

(Courtesy of B. Ménétrier)
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Length-scale and mesh density

Convolution with a heterogeneous length-scale

(Courtesy of B. Ménétrier)
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Sharp convolution length-scale gradients

Convolution functions in the presence of complex boundaries

Exact and cheap normalization is possible with both approaches.

(Courtesy of B. Ménétrier)
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Ensemble variational data assimilation

An ensemble of backgrounds is transformed into an ensemble of analyses

Ensemble backgrounds xb
p

Ensemble DA
xb
p → xa

p

Ensemble analyses xa
p

Observations

Deterministic background xb

Variational DA
xb → xa

Deterministic analysis xa

Observations

Covariances B

Mean xa

I Ensemble DA perturbations simulate deterministic errors.

I Deterministic and ensemble DA can use different algorithms, observations
and model grids.

I Ensemble DA can also use variational methods.

I There are scientific and practical advantages in keeping the determinstic
and ensemble DA systems as consistent as possible.
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Ensemble DA

There are many methods to transform an ensemble of backgrounds into
an ensemble of analyses that have been developed for NWP:

I Sequential filters (stochastic and deterministic)

I Ensemble Kalman Filters (EnKF; Houtekamer et al. 1998)
I Local Ensemble Transform Kalman Filter (LETKF; Hunt et

al. 2007)
I Ensemble Square Root Filter (EnSRF; Whitaker and Hamill 2002)
I Ensemble Adjustment Kalman Filter (EAKF; Anderson 2003)

I Variational methods

I Ensemble of Data Assimilations (EDA; Isaksen et al. 2010)

I Mean-Pert method (Lorenc et al. 2016)
I Var-EnKF (Buehner et al. 2017)
I EVIL methods (Aulginé et al. 2017)
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Using ensembles to define a flow-dependent B

I How to define a huge matrix of O(1014)-O(1018) elements from a
small number (O(10)-O(100)) of ensemble perturbations?

I The different approaches developed for variational DA can be
divided into two classes:

1. Approaches involving estimating covariance model parameters,
and possibly combining them with climatological or empirical
estimates (hybrid parameters).

I Sampling error is substantially reduced but (optimal) filtering
of the ensemble-estimated parameters is still desirable.

2. Approaches involving an ensemble-based sample covariance
matrix.
I Sampling error is huge and must be suppressed

(inflation/filtering/localization).
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Using ensembles to define a flow-dependent B

1. Approaches involving estimating covariance model parameters, and
possibly combining them with climatological or empirical estimates
(hybrid parameters).

I Variances (Bonavita et al. 2012; Raynaud et al. 2011; Daget et al. 2009)
I Wavelet-based correlations (Bonavita et al. 2016; Berre et al. 2015)
I Vertical EOF-based correlations (Storto et al. 2018)
I Local correlation tensor (Weaver & Mirouze 2013; Michel et al. 2016)
I Multiple scale covariance model parameters (Mirouze et al. 2016)

2. Approaches involving an ensemble-based sample covariance matrix.

I Localized sample covariance matrix (EnVar) (Lorenc 2003b;

Buehner 2005;...)
I Hybrid B (Hamill & Snyder 2000; Lorenc 2003b;...)
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Estimating flow-dependent variances from ensembles

“The use of flow-dependent variances alone is able to introduce a significant
degree of flow dependency in the analysis increments” (Bonavita et al. 2012)

ζ variances from
EDA (upper) and quasi-static (lower)

T (upper) and ζ (lower) increments
from a single T observation

for quasi-static (left) and EDA (right)
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Estimating flow-dependent variances from ensembles

Background T error standard deviations at 100 m (11-member ensemble)

(a) Raw (b) Objectively filtered (Ménétrier et al. 2015)

(c) Parameterized (d) Hybrid

(Example from the NEMOVAR system; Weaver et al. 2018)
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I Vertical EOF-based correlations (Storto et al. 2018)
I Local correlation tensor (Weaver & Mirouze 2013; Michel et al. 2016)
I Multiple scale covariance model parameters (Mirouze et al. 2016)

2. Approaches involving an ensemble-based sample covariance matrix.

I Localized sample covariance matrix (EnVar) (Lorenc 2003b;

Buehner 2005;...)
I Hybrid B (Hamill & Snyder 2000; Lorenc 2003b;...)

Earth System Assimilation, ECMWF Seminar – 10-13 September 2018



Using ensembles to define a flow-dependent B

1. Approaches involving estimating covariance model parameters, and
possibly combining them with climatological or empirical estimates
(hybrid parameters).

I Variances (Bonavita et al. 2012; Raynaud et al. 2011; Daget et al. 2009)
I Wavelet-based correlations (Bonavita et al. 2016; Berre et al. 2015)
I Vertical EOF-based correlations (Storto et al. 2018)

I Local correlation tensor (Weaver & Mirouze 2013; Michel et al. 2016)
I Multiple scale covariance model parameters (Mirouze et al. 2016)

2. Approaches involving an ensemble-based sample covariance matrix.

I Localized sample covariance matrix (EnVar) (Lorenc 2003b;

Buehner 2005;...)
I Hybrid B (Hamill & Snyder 2000; Lorenc 2003b;...)

Earth System Assimilation, ECMWF Seminar – 10-13 September 2018



Using ensembles to define a flow-dependent B

1. Approaches involving estimating covariance model parameters, and
possibly combining them with climatological or empirical estimates
(hybrid parameters).

I Variances (Bonavita et al. 2012; Raynaud et al. 2011; Daget et al. 2009)
I Wavelet-based correlations (Bonavita et al. 2016; Berre et al. 2015)
I Vertical EOF-based correlations (Storto et al. 2018)
I Local correlation tensor (Weaver & Mirouze 2013; Michel et al. 2016)

I Multiple scale covariance model parameters (Mirouze et al. 2016)

2. Approaches involving an ensemble-based sample covariance matrix.

I Localized sample covariance matrix (EnVar) (Lorenc 2003b;

Buehner 2005;...)
I Hybrid B (Hamill & Snyder 2000; Lorenc 2003b;...)

Earth System Assimilation, ECMWF Seminar – 10-13 September 2018



Estimating the local correlation tensor (LCT) from ensembles

I The LCT (H) is related to the diffusion tensor κ of an implicit
diffusion-based correlation model (Weaver and Mirouze 2013):

κ−1 ∝ −∇∇Tcd
∣∣
r=0

=H

where cd is a Matérn (Gaussian-like) correlation function in Rd.
I H can be approximated locally using derivatives of ensemble

perturbations ε(z) (Belo Pereira & Berre 2006; Michel et al. 2016):

H(z) ≈ ∇ε̃(z) (∇ε̃(z))T where ε̃(z) = ε(z)/σ(z)

I Filtering H is tricky to keep it positive definite (Michel et al. 2016).

Diffusion-
modelled SSH

correlations with
H estimated

from a
20-member
ensemble.

(Example from the NEMOVAR system)
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Estimating parameters of a multiple scale covariance model

I Linearly combine correlation models Cmi , i = 1, . . . , ns, with
different LCTs to represent scale-dependent background errors.

I E.g., a “two-scale” model (ns = 2) can be used to separate
background errors associated with the mesoscale (10-100 km) from
those associated with larger scales (> 100 km) (Martin et al. 2007; Mirouze

et al. 2016):
Cm = γ1Cm1 + (1− γ1)Cm2

(From Mirouze et al. 2016)
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Estimating parameters of a multiple scale covariance model

I A multiple scale covariance model can be fit locally to sample
correlations from an ensemble (e.g., using BUMP).

I The estimated parameters (weights and LCTs) can be used with a
diffusion-based correlation model (Weaver et al. 2016; 2018).

Diffusion-modelled SSH correlations with parameters estimated from a 20-member
ensemble.

“One-scale” model “Two-scale” model

(Example from the NEMOVAR system)
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Localized sample covariance matrix

I Construct a low-rank sample covariance matrix B̃ = X̃ X̃T where

X̃ =
1√

Ne − 1

(
x

1
− x, . . . , x

Ne
− x

)
I Remove perceived spurious correlations by forming the Schur

product (◦) of B̃ with a localization matrix L:

Be = L ◦ X̃ X̃T ⇐⇒
(
Be

)
ij
= Lij B̃ij
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Localized sample covariance matrix

I More generally, we can define (Clayton et al. 2013)

Be = T
(
L ◦ X̂ X̂T

)
TT (2)

where X̂ = T̂−1X̃ and T ≈ T̂.

I Some examples:
• T̂ ≡ Σ̃ =⇒ Localize the sample correlation matrix
• T̂ ≡ Kbal =⇒ Localize the sample covariance matrix

of the unbalanced variables
• T̂ ≡ KbalΣ̃ =⇒ Localize the sample correlation matrix

of the unbalanced variables

I Applying Eq. (2) in variational DA is made computationally feasible
using the operator form(

L ◦ X̂ X̂T
)
v =

Ne∑
p=1

x̂′p ◦ L
(
x̂′p ◦ v

)
I L = ULUT

L can be formulated in different ways (with different
costs): univariate, multivariate, scale-dependent, ...
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Scale-dependent localization (SDL; Buehner and Shlyaeva et al. 2015)

I Separate the perturbations x̂′p into m = 1, . . . , ns scales, from
smallest to largest.

I This can be done using a spatial filter FLm with filtering scale Lm,
which we assume increases from m = 1 to m = ns − 1.

I Define fmp = FLm x̂′p, from m = 0, . . . , ns, where FL0 ≡ I and
FLns

≡ 0.

I Construct the scale-separated perturbations as

ens−m+1
k = fm−1k − fmk ,

so that
∑ns

m=1 ens−m+1
k = x̂′p (the original perturbation!).

I Apply a localization matrix UmUT
n to each of the sub-matrices

em
k

(
en
k

)T, m,n = 1, . . . , ns, of an augmented sample covariance
matrix.
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Scale-dependent localization (SDL; Buehner and Shlyaeva et al. 2015)

SDL matrix with 3 scale-separation Sea-ice concentration (two observations at 3)

(From Buehner & Shylaeva 2015)
I SDL introduces a between-scale component in the localization matrix,

with amplitude less than one.
I The SIC example shows the difference between large-scale localization

only (top right), small-scale localization only (bottom left), and SDL
(bottom right).
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Using ensembles to define a flow-dependent B

I How to define a huge matrix of O(1014)-O(1018) elements from a
small number (O(10)-O(100)) of ensemble perturbations?

I The different approaches developed for variational DA can be
divided into two classes:

1. Approaches involving estimating covariance model parameters, and
possibly combining them with climatological or empirical estimates
(hybrid parameters).

I Variances (Bonavita et al. 2012; Raynaud et al. 2011; Daget et al. 2009)
I Wavelet-based correlations (Bonavita et al. 2016; Berre et al. 2015)
I Vertical EOF-based correlations (Storto et al. 2018)
I Local correlation tensor (Weaver & Mirouze 2013; Michel et al. 2016)
I Multiple scale covariance model parameters (Mirouze et al. 2016)

2. Approaches involving an ensemble-based sample covariance matrix.
I Localized sample covariance matrix (EnVar) (Lorenc 2003b;

Buehner 2005;...)
I Hybrid B (Hamill & Snyder 2000; Lorenc 2003b;...)
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Hybrid B

I Linearly combine a modelled and localized sample covariance matrix:

B = β2
m Bm + β2

e Be

where β2
m and β2

e are weighting coefficients.

I Bm usually contains “climatological” covariance information and is
intended to provide robustness to B.

I How to estimate β2
m, β2

e and L?
I One approach (Ménétrier and Auligné 2015) is to absorb β2

e into the localization
L and determine Lij and β2

m (neglecting systematic error!) by solving

min
β2
m,Lij

E
[
‖β2

m Bm + Be(Lij)− B̃?‖2
F

]
where B̃? = lim

Ne→∞
X̃X̃T.

I Fit the localization estimates to a correlation function (Matérn,
Gaussian,...) and model L with a diffusion operator or spectral transform.

I Alternatively, fit them to a compactly supported correlation function
(Gaspari and Cohn 1999) and use direct convolution (e.g., as done in BUMP).
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Hybrid B

Estimated localization functions

Hybrid covariances

I Localization scales increase with ensemble size.

I Hybrid weight β2
e (amplitude) increases with ensemble size.
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4D covariances with hybrid B in 4D-Var

Zonal wind increment produced from a single zonal wind observation at the
start (left panel) of a 6hr 4D-Var window, using a hybrid B.

(From Clayton et al. 2013)
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Outline

B basics

B modelling

Using ensembles to define a flow-dependent B

Concluding remarks
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Ongoing developments and future challenges

I Continue to improve the use of ensembles in flow-dependent
formulations of B.

I Better covariance models (scale-dependent, anisotropic tensors, ...);
flexible localization operators (scale-dependent, multivariate,
adaptive, ...); hybrid B; algorithms for estimating and filtering
covariance parameters.

I Continue to improve the computational aspects of correlation
operators (for covariance models and localization).

I Methods suitable for unstructured meshes (these will be needed for
both B and R); accurate and efficient normalization procedures;
better solvers and parallelization strategies.

I Estimating, understanding and modelling coupled
(cross-component) covariances (this work has only just begun!).

I Development of flexible software infrastructure (refactored codes,
OOPS, BUMP,...) is essential.
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(cross-component) covariances (this work has only just begun!).

I Development of flexible software infrastructure (refactored codes,
OOPS, BUMP,...) is essential.
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