Part VI: Technical and Computational Procedures _AECMWF

IFS DOCUMENTATION — Cy45r1
Operational implementation 5 June 2018

PART VI: TECHNICAL AND
COMPUTATIONAL PROCEDURES

Table of contents

Chapter 1 Structure, data flow and standards

Chapter 2 Parallel implementation

Chapter 3 The Python data assimilation suite definition for ecFlow
Appendix A Structure, data flow and standards

Appendix B Message Passing Library (MPL)

Appendix C The TRANS package

Appendix D FullPos user guide

Appendix E FullPos technical guide

References

© Copyright 2018

European Centre for Medium-Range Weather Forecasts
Shinfield Park, Reading, RG2 9AX, England

Literary and scientific copyrights belong to ECMWEF and are reserved in all countries. This publication is not
to be reprinted or translated in whole or in part without the written permission of the Director. Appropriate
non-commercial use will normally be granted under the condition that reference is made to ECMWF. The
information within this publication is given in good faith and considered to be true, but ECMWF accepts no
liability for error, omission and for loss or damage arising from its use.

IFS Documentation — Cy45rl 1

_AECMWF TABLE OF CONTENTS

REVISION HISTORY
Changes since CY43R1

None.

Changes since CY41R2

e Minor revisions to chapter 2 sections: High performance computer architecture; IFS parallelisation
issues; EQ REGIONS; FOURIER transform; Legendre transform.

e Deletion of outdated appendicies F and G.

Changes since CY41R1

° New chapter 3.

2 IFS Documentation — Cy45rl

Part VI: Technical and Computational Procedures _AECMWF

Chapter 1

Structure, data flow and standards

Table of contents
1.1 Introduction
1.2 Configurations
1.3 Structure
1.4 Data flow
1.4.1 Input/Output
1.4.2 Major data structures
1.5 Coding standards and conventions
1.5.1 Style and layout
1.5.2 Variables
1.5.3 Banned features
1.54 I/O
1.5.5 Parallelisation

1.1 INTRODUCTION

Development of what is now called the 1FS was started in 1987, with the aim of providing a single software
system delivering a state of the art forecast model with an integrated 4D-Var analysis scheme. Since
then the code has been in a state of continuous development, incorporating improvements to scientific
formulations, modifications to allow efficient utilisation of a range of High Performance Computer (HPC)
architectures, and technical changes to the structure and expression of the code to improve both its
efficiency and maintainability.

The 1Fs has, over time, grown to be a large and complex code. This chapter aims to give an overview
of the high level technical structure of the IFs, describing the configurations, control structure, data flow
and coding standards employed. More detailed technical information is given in the Appendices.

1.2 CONFIGURATIONS

The 1Fs contains many different functions within a single high level program structure, including:

2D and 3D model integrations;
variational analysis (3D/4D-Var);
adjoint and tangent linear models;
calculation of singular vectors.

For any single execution of the program, the function is selected by means of a configuration parameter.
The value of this parameter may be supplied to the IFS on the command line option (using the “-n”
option, see Table A.1 on page 96), or by using the namelist variable NCONF in namelist NAMCTO (see
Table C.3 on page 100). A detailed description of the recognised values of NCONF is given in Table D.11
on page 105.

1.3 STRUCTURE

All 1Fs configurations share a single top-level call tree:

IFS Documentation — Cy45rl 3

_AECMWF Chapter 1: Structure, data flow and standards

MASTER > CNTO

The routine MASTER calls CNTO after calling routines to initialise functions such as performance monitoring
and error trapping.

CNTO reads the configuration information from the command line and namelists, and then uses the
value of NCONF to call the control routine appropriate for the configuration requested. Table D.11 on
page 105 describes which control routine is used for each configuration. Once the required configuration
has completed, CNTO does any necessary housekeeping and clearing up, and after printing any requested
execution statistics, exits.

The top level calling tree of the forecast integration configuration looks like this:
MASTER > CNTO > CNT1 > CNT2 > CNT3 > CNT4

where CNT4 repeatedly calls STEPO (which performs a single timestep of the forecast model) in a
timestepping loop. Other configurations will “hook” into this (and into each other) at an appropriate
level. For example, 4D-Var has the following calling tree:

MASTER > CNTO > CVA1 > CVA2 > CONGRAD > SIM4D > CNT3

Here we see SIM4D called by the minimisation function CONGRAD, and SIM4D then performs a forecast
integration by calling it at level 3 (CNT3) since the previous control level was level 2 (CVA2).

A graphical representation of the 1FS calling tree is shown in Figure 1.1. In this “treemap” diagram,
each box represents one subroutine (and all the subroutines called from it), and the size of the box is
representative of the number of lines of code it (and its children) contain. The colour of the box is a
function of the name of the routine, enabling identification of the same routine that is being called from
multiple locations. It can be seen from the treemap that although the forecast model integration (CNT1
and below) only form a small proportion of the code called from CNTO, it is actually called (at CNT3 level)
from many parts of the 1Fs.

1.4 DATA FLOW

The IFS stores fields using both spectral and grid-point representations. The main spectral state variables
are all stored in both a spectral representation and also in grid-point space, with both representations
held in memory concurrently throughout a model integration. Other variables are stored in a grid point
representation only.

1.4.1 Input/Output

For the forecast configuration (NCONF=1, see Section D on page 105), the main state variables are read in
from the CSTA routine. This is called from “level 3” control, i.e.

MASTER > CNTO > CNT1 > CNT2 > CNT3 > CSTA

For all other configurations, the main state variables are read in and/or initialised from the SUVAZX
routine, which reads the data into the control variable. This is called from “level 17 control, i.e.

MASTER > CNTO > CNT1 > SU1YOM > SUVAZX

MASTER > CNTO > CVA1 > SU1YOM > SUVAZX
Similarly, the observational data is also read in at control “level 17, i.e.

MASTER > CNTO > CVA1 > SUOBS > MKCMARPL

Postprocessing, diagnostic and coupling data is output from a model integration after the loop over model
timesteps in routine CNT4.

Details of the input data files used by the 1Fs can be found in Section E on page 106.

4 IFS Documentation — Cy45rl

Part VI: Technical and Computational Procedures _AECMWF

MASTER
CNTO

CVAl
FORECAST_ERROR

CONGRAD SIM4D

JACDAV

MORTHODM

ADTEST

=o50i|[E]3

== @0
a[=]]

EOF_MATRIX

PCGBFGS

ml
S |@

XFORMEV

[=8]5|[=e]

| OPM

CONGRAD SIM4D.

m
=][-]
=== EEl[]|

ADTEST

OPK CHSYMEIG

OPK

SIM4D E

IEIII]

EOF_MATRIX

SIM4D

Ig%!I@IEﬂﬁha-

XFORMEV . . I

CUN1

NALAN1

CONGRAD

EOF_MATRIX

|EIE :
= 8 5y &1

EE e

OPM EOF_MATRIX

Al m

‘— ool [Ee|EEED

BALANCED_REDUCTION CNT2

TESTLI

OPK.

OPM

SIM4D

i =

Figure 1.1 Treemap of the 1rs Calling Tree.

IFS Documentation — Cy45rl 5

_AECMWF Chapter 1: Structure, data flow and standards

1.4.2 Major data structures

The spectral fields are carried in the module YOMSP, in which the arrays SPA3 and SPA2 hold the 3D and
2D state variable spectral fields. Individual fields within these arrays are addressed via pointers which
are defined in the same module. The grid point fields have a much more flexible storage structure, which
was introduced at cycle 27, and is designed to allow the easy incorporation of new prognostic variables,
without the need to know about and modify a large number of routines through 1Fs. The basic concept is
that all the grid point variables are stored within a single structure, and that any routine which performs
a generic operation on grid-point data just loops over all the grid point fields within the structure. There
is, however, the potential to control action for individual fields by the use of a set of attributes which are
associated with each field in the structure.

There are two core data-structures:

GMV Contains prognostic variables involved in the semi-implicit (u, v, T, ps in the hydrostatic model).
This can be considered to be a “fixed” data structure, with little reason for modification. The
prognostic fields all have a spectral representation, and can be either two or three dimensional.
There are no attributes, apart from field pointers, associated with the GMV fields.

GFL Contains all the other variables (currently ¢, ¢', ¢*, a, O3 in ECMWF’s operational model). This is
a more flexible structure that can be easily extended. All the fields are three dimensional, with
the vertical extent always the number of levels in the model. The fields may have a spectral
representation or be pure grid-point fields. A number of attributes are available to govern the
treatment of the field in question. All fields have two modes of being accessed; either as part of the
GFL structure, or as individual components.

More technical information of the implementation and usage of the GMV and GFL structures can be found
in Section F on page 109.

1.5 CODING STANDARDS AND CONVENTIONS

In this section, brief highlights of some of the most important features of the IFS coding standards
are given, to be used when writing and submitting code to the IFS system. It is recommended
that anyone planning on writing any significant amount of code for IFS refers to the up-to-
date Coding Standards document to be found online (at the time of writing: http://www.umr-
cnrm.fr/gmapdoc/IMG/pdf/coding-rules.pdf).

1.5.1 Style and layout

e Each file should contain only one module or procedure. The filename should be the name (in
lowercase letters) of the procedure it contains, with an appropriate extension (eg. .F90 for
FORTRAN 90).

e Executable lines should be written in uppercase characters, comments can use a mixture of case as
appropriate (but should be in English only). A consistent style should be maintained throughout a
subroutine or module.

e Use free-format FORTRAN 90, starting in column 1, but keeping lines to within 80 characters per
line.

° Continuation lines are marked by the continuation character & at the end of each line to be continued
and the start of the continuation line. Use indentation and alignment to maintain readability of
long, broken lines.

e Use indentation (spaces only, no tab characters) to make the structure more obvious (ie. loops, IF
blocks).

e A procedure should have only one entry and one exit point (the bottom of the procedure). Abnormal
termination should be invoked with the ABOR1 (‘Error Message’) routine.

e Each data module should begin with a description of the general content of the module and the
purpose of each declared variable (one line per variable).

e FEach procedure should begin with comments describing:

6 IFS Documentation — Cy45rl

Part VI: Technical and Computational Procedures _AECMWF

— the purpose of the procedure;

— the interface details, describing the arguments in the same order they appear in the interface;
— the externals (other subroutines/functions called);

— the method used in the application;

— a reference to further documentation;

— the author and date of creation;

— details of any modifications since the creation, including the author and date.

The first and last executable statement of every subroutine should be a conditional call to DR_HOOK:
First: IF (LHOOK) CALL DR_HOOK(’ROUTINE.NAME’,O0,ZHOOK HANDLE)

Last: IF (LHOOK) CALL DR_HOOK(’ROUTINENAME’,1,ZHOOK HANDLE)

In a procedure, variables should be declared or USEd in the order:

— variables USEd from modules;

— dummy arguments (in the same order as they appear in the argument list), and using the
INTENT attribute;

— local variables.

Loops should be written only using the DO ... ENDDO construct.

Use the SELECT CASE construct in preference to IF/ELSEIF/ELSE/ENDIF statements.

Use the FORTRAN 90 comparison operators rather than the FORTRAN 77 style operators (ie. “less
than” should be “<” rather than “.LT.”).

1.5.2 Variables

The use of IMPLICIT NONE is mandatory.

Each variable should be declared on a separate line, with declarations of variables with similar type
and attributes being grouped together. All the attributes of a given variable should be grouped
within the same instruction.

Arrays should be declared using the DIMENSION attribute, with the shape and size of the arrays
being declared inside brackets after the variable name on the declaration statement.

The use of array syntax is not recommended, except for simple operations such as the initialisation
of copying of whole arrays.

Where a MODULE is used to import a variable into a subroutine, the ONLY attribute must be used,
so that only those variables actually used by the procedure are imported.

Derived types should be declared in a module. Such a module should contain ONLY the declaration
of a single derived type (or a group of derived types if they are closely related), and any “primitive”
operations on the types (such as allocation/deallocation of its components).

All INTEGER and REAL variables and constants must be declared using explicit KIND, using the
parameters defined in the modules PARKIND1 and PARKIND2. Table 1.1 shows the commonly used
KIND parameters.

The first (or first two) letters of every variable name indicate its type and scope, as described in
Table 1.2. Prefixes shown in red and/or eressed-eut indicate those prefixes are not available for that
particular variable type/scope.

1.5.3 Banned features

GO TO should not be used (use instructions such as DO WHILE, EXIT, CYCLE, SELECT CASE
instead).

Use format descriptors rather than the obsolescent FORMAT statement.

Use MODULESs rather than COMMON blocks.

Do not change the shape or type of a variable when passing it to a subroutine.

CHARACTER variables should be declared using the syntax CHARACTER (LEN=n) var_name.

Arrays must not be declared with implicit size (REAL(KIND=JPRB) :: A(*)) but can be declared
with implicit shape (REAL(KIND=JPRB) :: A(:)).

IFS Documentation — Cy45rl 7

_AECMWF Chapter 1: Structure, data flow and standards

Table 1.1 Commonly used KIND parameters.

KIND SELECTED_* KIND Fortran 77 Range Precision

name value(s) equivalent Approzx.
JPIS 4 INTEGER*2 +21° -
JPIM 9 INTEGER*4 +231 -
JPIB 12 INTEGER*8 +263 -
gpral Dor INTEGER*4 or 423! or
12 INTEGER*8 +263

JPRM (6,37) REAL*4 +1037 1077
JPRB (13,300) REAL*8 +10397 10715

5 (13,300) or REAL*8 or 307 10~
JPRH (28,2400) REAL*16 +10 10731

LIf 64 bit INTEGERs are available, then these are used, otherwise 32 bit INTEGERs are used.
2If 128 bit REALs are available, then these are used, otherwise 64 bit REALs are used.

Table 1.2 Variable Prefiz Naming Convention.

Fortran Type

Scope INTEGER REAL LOGICAL CHARACTER Derived type
MODULE M.N A,B,E-H, L C Y
variable ’ 0,Q-X ID,LLLP €D,CL,CP YD, VL VP
Dummy P PP LD cD YD
argument
Local
. I Z LL CL YL

variable
L

00p J1p _ _ _ _
control
PARAMETER JP PP LP CP YP

1.5.4 I/0O

e User supplied configuration variables should be access via a conventional formatted sequential file
containing namelists (Unit NULNAM=4).

e Each namelist should be contained is a specific include (.h) file, with the filename being the same
as the namelist name (in lowercase).

e Output messages should be written to unit NULOUT, error messages to unit NULERR. Do not explicitly
write to units 0,6 or “x”.

1.5.5 Parallelisation

e Only use MPL package for message passing, and set the CDSTRING to the name of the caller routine.

8 IFS Documentation — Cy45rl

Part VI: Technical and Computational Procedures _AECMWF

Chapter 2

Parallel implementation

Table of contents

2.1 Introduction
2.1.1 High Performance Computing architecture
2.1.2 Overview of IFS parallelisation
2.1.3 IFS parallelisation issues

2.2 Grid point computations
2.2.1 Grid point dynamics and physics
2.2.2 EQ-REGIONS
2.2.3 Radiation
2.2.4 Semi-Lagrangian advection

2.3 Fourier transform

2.4 Legendre transform

2.5 Semi implicit spectral calculations

2.1 INTRODUCTION
2.1.1 High Performance Computing architecture

Before we describe the 1Fs parallelisation and its associated code and data structures, it is useful to
understand the basic architectures used in a typical High Performance Computing (HPC) environment,
as it is these which have largely directed the design of these structures.

The obtainable performance of a Central Processing Unit (CPU) is ultimately constrained by a number
of factors; some technological such as the density of transistors on the silicon, thermal characteristics and
memory bandwidth, but also fundamental constraints such as the speed of light. To enable increasing
performance within current technological parameters, manufacturers have for many decades exploited
parallelisation as a cost effective solution, the basic concept being to replicate the basic processing unit
many times, having them act in parallel on the problem being solved.

Although the hardware technology and architectures have evolved considerably over the past decades,
compiler technology has not always kept pace with these changes. By and large, compilers still produce
code for a single processor, and any parallelisation has to be at least directed by, if not explicitly coded
by the programmer.

Today’s architectures typically contain multiple layers of parallelism, which are described below:

CPU
The basic computational unit will usually contain a small number of independent functional
units. Typically each unit will be capable of performing a small number of basic operations (for
example, a CPU may contain two functional units capable of doing add/multiply instructions, one
functional unit for divides and one for logical operations). The parallelisation is usually obtained by
“pipelining” these units. This can be thought of rather like cars on a conveyor belt in a production
line - the data passes from one functional unit to another as they apply their various operations as
required on the data. Once the pipeline has filled up, each functional unit will be operating on a
different piece of data in the stream, and a result will pop out of the pipeline after every clock tick.

IFS Documentation — Cy45rl 9

_AECMWF Chapter 2: Parallel implementation

In addition, the CPUs in current general purpose HPC architectures achieve parallelism through
vectorisation. In a vector CPU, the basic machine instruction operates on multiple units of data
(vectors) at a time (eg. ADD Vector A to Vector B). Although these CPUs offer high levels of
performance, to achieve the maximum performace requires that the vector units are continually
provided with data to operate on. This can be difficult to achieve as the memory bandwidth is not
sufficient to deliver this data at the rate that would be required. To achieve the best performance it
is important to use data that is already present in the local cache of the CPU since the bandwidth
to cache is much higher than to main memory. For this reason it is typically better to operate on
short vectors so that once data is loaded from main memory into local cache it can be re-used
multiple times without being flushed from cache.

An alternative type of computer architecture makes use of an accelerator which is connected to a
general purpose host processor. Modern accelerator processors such as Graphics Processing Units
(GPUs) have much higher levels of floating point performace though multiple large vector units,
albeit at a lower clock-speed than general purpose processors. GPUs also have much higher memory
bandwidth allowing them to operate efficiently with long vectors.

The parallelisation within a CPU is generally largely exploited by the compiler. However, the
programmer does have some control over the efficiency of the parallelisation, as described above;
depending on the CPU architecture, the inner loop should perhaps be small or very large in order
to gain maximum performance. It is also sometimes necessary (usually more so for a vector CPU)
for the programmer to add directives (hints to the compiler, often describing data dependencies)
in the code to enable the compiler to make the correct decision on how to parallelise the work in
the inner loop. In addition, for accelerator architectures the movement of data between host and
accelerator must be managed by the programmer.

Node
A node is a collection of CPUs which share a common memory. Any CPU in the node can access
any memory on the node without the explicit collaboration of any other CPU on the node.

In practice, a node contains one or more physical processor chips, with each chip containing multiple
CPUs (also known as cores). Each physical processor chip typically has some memory attached
directly, and it is also able to access the memory attached to the other chips within the node.
Access to another chip’s memory is not as fast as accessing a chip’s own memory. For this reason
this type of node is known as a Non-uniform memory access (NUMA) node, and a single chip with
its own memory is known as a NUMA region. The best performance is often achieved when the
on-node parallelism is limited to a single NUMA region, and the other NUMA regions are treated
as different nodes.

Although some compilers will attempt to parallelise a code over nodes, a code as complex as IFS
needs a programmer to direct the parallelisation. The compiler needs to have identified to it, either:

e Chunks of code operating on independent data, so different CPUs on the same node
can perform different computations without having to worry about interactions (data
dependencies) with any other CPUs on the node.

e Independent iterations of a loop, so different CPUs on the same node can perform different
iterations (or more commonly subsets of the total iterations) of a loop, without having to worry
about interactions with any other CPUs on the node. This is the form of node parallelisation
commonly exploited in IFS.

This compiler direction is achieved using OPENMP!, which is a set of directives the programmer
inserts in the code to inform the compiler that it is safe to farm out subsets of a loop’s iterations
to different CPUs on the node.

Starting and completing a parallel OPENMP block of code carries a certain overhead, as the
operating system synchronises the CPUs and carries out any other necessary housekeeping. For
this reason, it is advantageous to minimize the number of OPENMP loops in a code. In practise,
this is achieved by keeping the OPENMP at a high level of the code - so instead of applying

LOPENMP is a portable open API available on all commercially available shared memory HPC systems. For further
information see http://www.openmp.org/.

10 IFS Documentation — Cy45rl

Part VI: Technical and Computational Procedures _AECMWF

OPENMP directives around each loop in a low level computational module, it is more efficient to
apply OPENMP around a loop in which this computational module is called (where the loop is over
independent data points).

OPENMP parallelisation is in some ways the easiest kind of parallelisation to implement as it
appears to require very little change to code and data structures. However, first appearances can
be deceptive, as the devil can be in the detail. A fundamental requirement for a correct and reliable
OPENMP parallelisation is that loop iterations are independent, and that the order of execution
of the iterations does not affect the final result. When a code can safely be run with different
numbers of processors in the OPENMP parallelisation, with reproducibly identical results, it is said
to be “Thread Safe”. It is usually easy to verify that a simple loop will be thread safe, but as
was just explained, IFS typically uses OPENMP at a very high level in the code - the code within
an OPENMP parallelised loop can often contain deeply nested subroutine calls to complex and
relatively unknown code. Verifying, debugging and fixing the thread safeness of such code is often
a non trivial exercise!

Distributed Memory
This is the “top level” of parallelisation, consisting of a number of nodes, where each node has its
own independent memory (shared amongst the CPUs in the node as described previously). If any
CPU needs to access memory on another node, then an explicit communication (Message Passing)
is required with a CPU on that remote node which has direct access to that memory.

Although a number of attempts have been made at automatically parallelising at this level, none
have been able to deliver high performance and reliable results, especially to complex codes such
as IFS, so programmer parallelisation is required.

Distributed Memory parallelisation requires a considerable knowledge of the dataflow and data
dependencies and potentially has a much larger code impact than the shared memory (node)
parallelisation:

e The full data structures need to be decomposed so that each node now has a data structure
which only holds a subsection of the total data being computed by the application, along with
additional metadata that allows a node to know about the subsection of data it has; such as
where it is in the total data space, and which nodes contain its neighbouring data.

Code needs to recognise it is only dealing with a subsection of the data.

Data dependencies need to be resolved by either communicating data between relevant
processors to resolve dependencies, or redecomposing (transposing) the data in such a way
that the dependencies can be satisfied by the subsection of data now on the node.

Communicating data between nodes is achieved using MPI (the Message Passing Interface), although
in the I1FS this is hidden under an interface layer “MPL” (see Appendix B). In IFs this communication
mostly takes the form of transposing the data between different computational phases of the model,
and is described in more detail later in this chapter.

This communication strategy is an important characteristic of the 1Fs, and is a fundamental
property of the spectral transform method it employs. A purely grid point model, which has
data dependencies in many different dimensions during different phases of the model integration
typically requires explicit communication to be invasively added throughout the model code, and
generally requires special data structures with halo regions for finite difference calculations. In
contrast, the 1Fs already (before parallelisation) has a different data structure for each major
computational component of the integration, and in each phase this data structure has at least
one data independent dimension (that is, different elements of the given dimension(s) can be safely
computed in parallel as they are not interdependent). This means that (generally speaking) there
is no communication required within the main computational phases, and the communications
can be localised to the transpose/transform steps which move the data between the different data
structures/representations used for different phases of the integration.

IFS Documentation — Cy45rl 11

_AECMWF Chapter 2: Parallel implementation

2.1.2 Overview of IFS parallelisation

Having seen the various levels of architectural parallelisation that are available, we now consider how this
is applied to the 1FS.

A meteorological model such as 1Fs may have a basic data structure for grid-point model data which is
of the form shown in Listing 2.1.

Listing 2.1 Basic model data structure.

REAL Model_Data (1:Horiz_i,
1:Horiz_j,
1:Levels_k,
1:Fields)

Here we have shown a basic (regular) 3D grid-point field. The 1FS of course, also contains reduced grid-
point, Fourier and spectral fields, but the same principles that are demonstrated here can also be extended
to such fields.

The first step is to consider the distributed memory parallelisation. We need to break up, or “decompose”
the data so that every node has a subset. Potentially we could decompose every dimension of
“Model Data”, and that is what we will consider here. Of course, it is unlikely that it is ever possible to
do this, as there will almost always be some kind of dependency in one or more dimensions, depending on
the computational algorithm that is being applied to the data. In this case, the dimension(s) containing
the dependency(s) would be left undecomposed (or possibly, if decomposition was unavoidable, extra
message passing would be introduced to satisfy the data dependencies).

So, decomposing the data in every dimension, we now have, on any one node, an array of the form shown
in Listing 2.2.

Listing 2.2 Decomposed data structure.

REAL Model_Data (1:Decomposed_Horiz_i,
1:Decomposed_Horiz_j,
l1:Decomposed_Levels_k,
1:Decomposed_Fields)

(NB This regular decomposition is actually a simplification of the decomposition actually used by
1FS which is described later in this chapter, but will serve to demonstrate the principles used in the
parallelisation.)

Of course, there will also be some additional variables associated with this which will describe this node’s
position in the decomposition, who its neighbours are and other such useful information.

We now come to consider the lower two levels of parallelisation; over the node (shared memory or
OPENMP parallelisation), and on the CPU.

The data structure we now have presents a problem. Both of these levels of parallelism are essentially at
the loop level. The CPU parallelisation will be over the innermost loop:

DO i = 1 , Decomposed Horiz_i

whilst the node parallelisation will be at an outer loop (Decomposed Horiz_j, Decomposed Levels k or
Decomposed_Fields depending on the algorithm and its data dependencies).

An issue now arises, in that we have very little way of controlling the size of these loops, which is a problem
for both levels of parallelism. For the innermost loop (CPU parallelism) we would like some control over
the number of iterations to maximise the efficiency of the scalar or vector CPU architecture. For the

12 IFS Documentation — Cy45rl

Part VI: Technical and Computational Procedures _AECMWF

outer loop which is parallelised with OPENMP (and we try to ensure this is as outermost as possible
for the efficiency reasons described earlier), we need to ensure that there are at least as many iterations
as there are CPUs on the node (otherwise some CPUs would be left with nothing to do). Additionally,
we would prefer that there to be many more iterations than CPUs on a node - this will ensure a better
load balance of work across the CPUs on a node. (If each CPU only had one iteration of the loop, and
the iterations were not all of equal cost, then the total computational cost would be determined by the
slowest iteration. If each CPU is given a number of iterations, then the costs should average out across
the CPUs and a better load balance will be achieved.)

With this data structure, the size of the loops is determined by a function of the non-decomposed
dimension, and the decomposition in the dimension concerned, which may be different in different parts
of the code.

To avoid this performance limitation, the data structure is manipulated in 1FS in such a way to give better
control over the loop lengths of these performance critical loops. Before we consider how this happens, we
will simplify the example, and bring it closer to the grid-point decomposition used in the 1Fs by removing
the decomposition over levels and fields (and replace the variables describing them with the variables
used if 1FS). In the grid-point part of 1FS there are too many dependencies in these dimensions to make
them suitable for decomposition. This means we have a structure as shown in Listing 2.3.

Listing 2.3 Simplified field structure with no decomposition over levels or fields.

REAL Model_Data (1:Decomposed_Horiz_i,
1:Decomposed_Horiz_j,
1:NFLEVG,
1:NFIELDS)

The first step of the manipulation is to merge the leading horizontal dimensions (i,j) into a single
dimension 1:Decomposed_2D_Field which contains all the (decomposed) points for a single level of a field
on this node, as shown in Listing 2.4.

Listing 2.4 Merged Leading Dimensions.

REAL Model_Data (1:Decomposed_2D_Field,
1:NFLEVG,
1:NFIELDS)

We now split the leading dimension (Decomposed 2D Field) in such a way that we introduce a new
(artificial) leading dimension which we can control the length of. In the physical parameterization and
Eulerian dynamics code of 1FS this inner loop length is called NPROMA and the total Decomposed 2D _Field
is broken up into NGPBLKS blocks. We now have the data structure shown in Listing 2.5.

Listing 2.5 NPROMA blocking.

REAL Model_Data (1:NPROMA,
1:NFLEVG,
1:NFIELDS
1:NGPBLKS)

The value of NPROMA is chosen by the user at run-time to suit the computer architecture of the (small
values, typically a few 10’s for general purpose processors, and larger values (100’s or 1000’s) for systems
with large vector units such as GPUs).

IFS Documentation — Cy45rl 13

_AECMWF Chapter 2: Parallel implementation

The innermost loop should perform well on the CPU (for general purpose processors the data size should
be small enough to fit in cache, and the outermost loop can be parallelised over the node using OPENMP,
giving the typical code structure shown in Listing 2.6.

Listing 2.6 Loop