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A new hybrid formulation for the background error covariance: implementation aspects

Summary

The analysis of the Integrated Forecasting System (IFS) aims at estimating the optimal model state at
the initial time using all available information. The optimal state is obtained by improving the fit to
the assimilated observations and to an a priori estimate of the initial state called background. This
optimisation process takes account of the observation errors and the background errors.

This document focuses on the background errors. Their roles in the optimisation process are (i) to
weight the background information with respect to the observation information (ii) to spatially spread
the information brought by the observation (iii) to finally spread the information between the model
variables. The implementation of the background errors usually combines a static part and an ensemble-
based part. The ensemble-based part aims at bringing flow-dependent information while the static part
acts as a regularisation of the possibly noisy information from the ensemble-based part.

Combining a static part and an ensemble-based part is already our current approach for the operational
analysis. The information needed to model the ensemble-based background errors is derived from an
ensemble of data assimilations (EDA). In this report, we are documenting a different approach to com-
bine static and flow-dependent information in order to model the background errors for the analysis.
The hybrid background error covariances matrix is chosen to be a weighted sum of a static matrix and
an EDA-based matrix. The static matrix is based on EDA members of the past using the wavelet ap-
proach. The EDA-based matrix is computed using directly the EDA members of the day combined with
a localisation function in order to reduce the noise.

The implementation of the new approach is described and the various implementation options are de-
tailed. The new approach is illustrated through the example of the assimilation of one observation of
temperature located at the beginning of the assimilation window. This framework allows to highlight the
impact of the background errors. We compared several experiments using the new formulation with two
reference experiments that have the same configuration but which have different background errors. The
first reference experiment is based on the static background errors which is also used in the new hybrid
formulation. The second reference experiment mimics the usage of the background errors of the day
we have in operation. When merging the flow-dependent background errors and the static error with a
respective weight of 50%/50% or 75%/25%, we show that we have an increment similar to that of the
reference experiment in shape, with still a benefit from the flow dependent-information.

The single observation experiments carried on in this document do not allow to discuss the merits of
the new hybrid formulation compared to the current formulation of the background error covariance.
A proper comparison of the two formulations is ongoing and should help detecting the strengths and
weaknesses of the current approach.
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A new hybrid formulation for the background error covariance: implementation aspects

1 Introduction

The 4D-Var implementation of the Integrated Forecasting System (IFS) aims at estimating xa
0, the best

model state at the initial time x0, using all available information. This is achieved by minimising the
non-linear cost function

J (x0) =
1
2

[
x0 −xb

]T
B−1

[
x0 −xb

]
+

1
2

N

∑
i=0

[yi −yo
i ]

T R−1
i [yi −yo

i ] . (1)

The first part of the cost function of Eq. (1) computes the distance between the initial state x0 at time t0
and the background state xb normalised by the background error covariance matrix B. The second part
computes for each time ti for i ∈ [0,N] the distance between the observation vector yo

i and yi, the model
equivalent of the observation and at the same time. The distance is normalised by the observation error
covariance matrix Ri.

The model equivalent yi is the propagation of the initial state x0 from time t0 to time ti with the (non-
linear) forecast model Mi combined with the (non-linear) observation operator Hi,

yi = Hi ◦Mi (x0) . (2)

The observation operator Hi transforms the model state xi = Mi (x0) at time ti into the observation space
in order to be able to compare it with the observation vector yo

i .

1.1 Incremental approach

In the IFS, we have an incremental approach to search for the minimum of the cost function of Eq. (1).
This consists in searching for the minimums of a succession of linearised version of the cost function of
Eq. (1). For this approach we introduce the control vector χ such as

χ = B− 1
2 δx0 with δx0 = x0 −xb , (3)

and then we proceed to the linearisation of the operators around the first guess state xg. In this document
we present the case where we linearise the cost function only once. In that particular case, the first guess
state xg is the background state xb. Using the new control vector χ of Eq. (3), the model equivalent of
the observation of Eq. (2) becomes

yi = Hi ◦Mi

(
xb
)
+Hi Mi B

1
2 χ , (4)

where Hi and Mi are respectively the tangent linear versions of Hi and Mi, and where the second order
terms are neglected. The incremental approach allows to compute the innovation vector

do,b
i = yo

i −Hi ◦Mi

(
xb
)
, (5)

beforehand for each time ti. Using the new control vector of Eq. (3) and the innovation of Eq. (5) in
Eq. (1) leads to the new linear cost function

J (χ) =
1
2

χ
T

χ +
1
2

N

∑
i=0

[
HiMiB

1
2 χ −do,b

i

]T
R−1

[
HiMiB

1
2 χ −do,b

i

]
. (6)

The minimum χa of the new linear cost function of Eq. (6) is converted to the analysis state xa with
Eq. (3). In the incremental approach, the analysis state is used as a first guess around which the operators
are linearised. This leads to a new linear cost function to minimise and a new minimum, which is again
used to compute a new first guess, and so on. For each new linearisation of the operators, the linear
version could be a simplified version of the full operator (lower resolution, simplified physics, ...).
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1.2 Background errors

The control vector χ contains representations of the two and three dimensional atmospheric model vari-
ables on the model grid. If N is the size of the control vector then the background error covariance matrix
has the dimension N ×N. With the inner loop resolution currently used, N is a large number of the order
of 109. The background error covariance matrix is then too large to be computed and stored. It is de-
composed into three main operators that can be applied sequentially: the background error correlations
of the unbalanced variables (C), the background error standard deviation (Σb) and the balance operator
K,

B = KSJ Σ
b CΣ

bT ST
J KT . (7)

In the IFS, the state x is a combination of atmospheric model variables in spectral space (vorticity,
divergence, temperature and logarithm of surface pressure) and atmospheric model variables in grid-point
space on a grid defined by a Gaussian quadrature (specific humidity and ozone). The operator K maps
the ’unbalanced’ control vector to the atmospheric model variables. The ’unbalanced’ control vector is
composed of vorticity (spectral space) and ozone (grid-point space) and the ’unbalanced’ components
of divergence, temperature and surface pressure (spectral space) and normalised relative humidity (grid-
point space). The operators C and Σb operate in grid-point space. We therefore have an extra operation
SJ in Eq. (7) that performs the spectral transform at the highest wavenumber NJ only for the variables of
the ’unbalanced’ control vector that are in spectral space.

If we decompose the background error correlations operator into C = C
1
2 C

1
2

T
in Eq. (7) and if we use

Eq. (3), the change of variable becomes

δx0 = KSJ Σ
b C

1
2 χ . (8)

The computation of C
1
2 χ is completed using the wavelet formulation (see Appendix C of Fisher et

Andersson, 2001, for more details). The wavelet form of the control vector χ is composed by a series of
variables,

χ =


χ0
χ1
...

χJ

 , (9)

where χ j, ∀ j ∈ [0,J], is expressed in grid-point space. Each index j corresponds to a “cutoff” wavenum-
ber N j associated with its own reduced Gaussian grid. Table (1) gives an example of the selected
wavenumbers and the associated grid.

Table 1: Example of selected wavenumbers in the wavelet approach (middle row) and
number of latitudes (bottom row) for the associated reduced Gaussian grid.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13
“Cutoff” wavenumber 0 1 2 3 5 7 10 15 21 31 47 63 95
Nb. of latitudes 1 1 1 1 4 8 8 16 16 32 32 64 64

For each sub-part χ j of the control vector defined on its own reduced Gaussian grid, a vertical correlation
matrix C j is defined to operate on the same grid. The square root of C j is then applied to χ j and the result
is transformed in the spectral space through S j. The wavelet formulation of the full square root of the
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background error correlation is finally the sum of the contribution from each wave number j convoluted
by the functions Ψ j that defines the wavelets,

C
1
2 χ = S−1

J

J

∑
j=0

Ψ j ⊗ S j C
1
2
j χ j . (10)

The operator S−1
J brings back the fields in grid-point space from the highest wavenumber N j.

2 Hybrid background error covariance

2.1 Current hybrid background error covariance

The background error covariances are hybrid in the IFS: they are the combination of a static part and an
ensemble-based part. The ensemble-based part aims at bringing flow-dependent information while the
static part acts as a regularisation of the possibly noisy information from the ensemble-based part.

The ensemble information comes from the Ensemble of Data Assimilations (EDA, Bonavita et al., 2012).
The EDA is composed of an ensemble of 4D-Var analysis cycles at lower resolution than the deterministic
4D-Var. Each member of the ensemble makes use of perturbed observations, perturbed sea-surface
temperature fields and perturbed model physical tendencies.

The background error standard deviation Σb of Eq. (7) is estimated using only the members from the EDA
of the day and does not have a static part. The first step for its estimation is to compute the background
of the unbalanced variables xub

m , ∀m ∈ [1,M] using the inverse of the balance operator K,

xub
m = K−1xb

m , ∀m ∈ [1,M] . (11)

For each element xub
i,m of this unbalanced background vector of Eq.(11), we then compute the ensemble-

mean

xub
i =

1
M

M

∑
m=1

xub
i,m . (12)

Lastly each element σb
i of the diagonal matrix of the background error standard deviation Σb is the

ensemble standard deviation of the unbalanced backgrounds,

Σ
b =


. . . 0

σb
i

0
. . .

 ,where σ
b
i =

√
1

M−1

M

∑
m=1

(
xub

i,m − xub
i

)2
. (13)

Note that in the IFS the background error standard deviation is computed at a fixed resolution and then
interpolated in grid-point space at the inner-loop resolution.

Contrary to the background error standard deviation, the background error correlations of the unbalanced
variables C are not computed using only the EDA members of the day. Instead the background error
correlations are a combination of correlations of the day and climatological correlations. Moreover, we
have to compute the square root of the correlation matrices C j of Eq. (10) for all the wavenumbers N j

with j ∈ [0,J] with the wavelet approach. For a given wavenumber N j and using the EDA members of
the day, we compute ce

j(k, l), the vertical correlation of the background error between the model levels k
and l (see Appendix A). It is combined with a climatological value cs

j(k, l)

c j (k, l) = α j cs
j (k, l)+(1−α j) ce

j (k, l) , (14)
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where the coefficient α j depends of the wavenumber. For example, α j = 0.3 for the small wavenumbers
and up to α j = 0.9 for the largest wavenumbers. The computation of the climatological correlation cs

k,l
is using EDA members of the past for several evenly sampled dates covering almost a year.

2.2 New hybrid background error covariance: design

Another approach to building a hybrid background error covariance is to compute the weighted sum of
a modelled (or static) background error covariance matrix Bs and a background error covariance matrix
Be directly computed from an ensemble (Hamill et Snyder, 2000),

Bh = γ
s2Bs + γ

e2Be with γ
s2 + γ

e2 = 1 . (15)

In our implementation, the static background error covariance matrix Bs is using the same formulation as
the current background error covariance matrix. The difference is that we can use climatological values
instead of using the EDA members of the day to compute the standard deviation matrix Σb and the square
root of the correlation matrix C.

2.2.1 Ensemble-based background error covariance

The ensemble-based background error covariance matrix Be is no longer decomposed into the operator
sequence of Eq. (7). Instead it is based on an estimation of the error computed directly from an ensemble
of M background states xb

i ,

B̃e =
1

M−1

M

∑
m=1

(
xb

m −xb
) (

xb
m −xb

)T
with xb =

1
M

M

∑
m=1

xb
m . (16)

If we define the perturbations of the member m by the column vector

xb′
m =

1√
M−1

(
xb

m −xb
)
, (17)

and the rectangular matrix
Xb′ =

(
xb′

1 · · ·xb′
M

)
, (18)

then the matrix B̃e is given by
B̃e = Xb′Xb′T . (19)

2.2.2 Decomposition of the hybrid background error covariance

To illustrate the characteristics of each part of the hybrid background errors of Eq. (15), we computed
the standard deviation and the covariance at a given point for the static and ensemble-based temperature
background errors for the analysis of 1 November 2017 and for the model level around 900 hPa. The
ensemble-based statistics are computed from a 25 members EDA for that date.

The standard deviation of the static part of the background errors Bs is the square root of the mean
background error variance over the period that spans between November 2017 and January 2018. With
the wavelet formulation, we do not have a direct access to the background error horizontal correlation. It
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is nevertheless possible to diagnose its structure using a Legendre transform (Rochas et Courtier, 1992)
and then to estimate its length-scale. To estimate the covariance at a given point, we therefore multiplied
the variance field by a normalised Gaussian function centered around that point and with the estimated
length-scale at that point.

(a) Static – std. (b) Static – cov.

(c) Ens. – std. (d) Ens. – cov. (e) Ens. – cov + localisation

Figure 1: Examples of temperature background error statistics around 900 hPa on
31 October 2016 at 21:00: standard deviation (a and c, in K) and covariance (b
and d, in K2) or localised covariance with a length-scale of 300 km (e) for the point
located at (50◦N, 0◦E). Top row: static background error. Bottom row: ensemble-
based background error.

Figure 1 displays the statistics for the static and ensemble-based temperature background errors for the
analysis on 1 November 2016. The standard deviation of the static error is smooth with largest values
west of France (Fig. 1a). The covariance for a point located in the middle of the English Channel (50◦N,
0◦E) is well-centred around the point but not isotropic by construction. It has highest values slightly to
the west due to the largest values in the standard deviation (Fig. 1b).

The standard deviation of the temperature background errors of the day estimated from the ensemble
is less smooth than the standard deviation from the static errors as expected (Figs. 1a and 1c). This is
partially due to the sampling noise. It is also worth noting that the errors of the day are extracted and
plotted on a 0.2◦× 0.2◦ regular grid while the static errors are extracted and plotted on a 1.25◦× 1.25◦

regular grid. This last grid is the closest regular grid to the T159 grid used in the current configuration
for Σb. The truncation towards this coarser grid also smooth the static errors.

The maximum of the standard deviation of the day is located south of Iceland (Fig. 1c). With values
over 2 K, the maximum is much larger than everywhere else and much larger than the maximum of the
static standard deviation errors (around 0.6 K). As a consequence, the covariance for the same point as
before has large values south of Iceland but also larger positive and negative values elsewhere (Fig. 1d).

2.2.3 Localisation

One expects a background error covariance to have decreasing values when moving away from the point
where the covariance is computed. The previous example illustrated that this is the case with the static
covariances (Fig. 1b) but not for the ensemble-based one (Fig. 1d). This issue is addressed using a

Technical Memorandum No. 832 7
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localisation that consists in applying a correlation function centred around the point where the covariance
is computed.

If Ĉ is the localisation matrix that provides a correlation function for every point of the raw ensemble-
based background error covariance matrix B̃e of Eq. (16), then the localised background error covariance
matrix is

Be = B̃e ◦ Ĉ , (20)

where Ĉ has the same size as B̃e and ◦ denotes the element-by-element product of the two matrices (also
called the Hadamard-Schur product).

The localisation we choose here for illustration is a Gaussian function centred around the point where
we compute the covariance and with a length-scale of 300 km. When applied to the raw covariance,
this localisation gives a filtered covariance field that has the desired properties (Fig. 1e). Compared to
the static covariance, the filtered covariance of the day has lower values and extends more towards the
north-west of the point.

2.2.4 Hybrid weight

To further illustrate the effect of merging static and flow dependent information in the background errors,
we computed the hybrid covariance for the same point (middle of the English Channel, 50◦N, 0◦E) for
various weights and for the temperature around 900 hPa on 31 October 2016 at 21:00 (Fig. 2).

(a) Hybrid – γe2 = 25% (b) Hybrid – γe2 = 50% (c) Hybrid – γe2 = 75%

Figure 2: Example of hybrid temperature background error covariance (in K2) ob-
tained by combining the static covariance of Fig. (1b) and the localised ensemble-
based covariance of Fig. (1e) for different weights.

In that example the hybridisation has for consequence to first decrease the amplitude of the covariance
with a maximum value lower and lower when the ensemble weight γe2 increases. Secondly the shape
gets more and more small scale structures.

2.3 New hybrid background error covariance: implementation

2.3.1 Algorithm

As detailed in Section. 1.1, the IFS is using the square-root of the background error covariance matrix.
To implement the hybrid background errors in that context, we choose a variation of algorithm (1) from
Desroziers et al. (2014). The hybrid control vector χh is based on the current control vector (referred
hereafter to as χs) augmented with M variables χe

m, ∀m ∈ [1,M], where M is the number of used EDA

8 Technical Memorandum No. 832
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members and all having the same size as the perturbation xb′
m ,

χ
h =

(
χs

χe

)
and χ

e =


χe

1
χe

2
...

χe
M

 . (21)

The expression of the cost function with the hybrid control vector remains the same as in Eq. (6) even if
the control vector is now extended. The change of variable becomes

δx0 = γ
sBs 1

2 χ
s + γ

eBe 1
2 χ

e , (22)

where the static part Bs 1
2 χs is computed as in Eq. (8) using the wavelet formulation. The square-root of

Be can be written
Be 1

2 = D̂Ĉ
1
2 , (23)

with D̂ a diagonal matrix containing the elements of the perturbations xb′
m of Eq. (17), such that the

product of D̂ with any vector v = (v1 v2 · · ·vM)T is

D̂v =


xb′

1 0
0 xb′

2 0

0
. . . 0
0 xb′

M




v1
v2
...

vM

=
M

∑
m=1

xb′
m ◦ vm , (24)

where vm, ∀m ∈ [1,M], has the same size as the perturbation xb′
m .

To reduce the cost of this new formulation of the hybrid background error, we decided to have the same
horizontal localisation for all variables of the (static) control vector and for all model level, and to neglect
the vertical localisation. These hypotheses allow to expand the control vector with M two-dimensional
fields χ̃e

m, ∀m ∈ [1,M], instead of the M fields χe
m of the dimension of xb′

m (see Appendix B for more
details). Then, the ensemble-based part of the change of variable of Eq. (22) takes the final form

Be 1
2 χ

e =
M

∑
m=1

xb′
m ◦ ΘĈ

1
2
h χ̃

e
m , (25)

where Ĉ
1
2
h localises horizontally the two-dimensional fields χ̃e

m, ∀m∈ [1,M], and Θ replicates the localised
2D fields on the model vertical levels and on all variables.

Until now, for all m ∈ [1,M], χe
m had the dimension of the perturbation xb′

m and χ̃e
m had the dimension of

a two-dimensional field of the perturbation. To take advantage of the wavelet formulation for modelling

a correlation function in the IFS, we decided to express χ̃e
m in the wavelet form such as Ĉ

1
2
h χ̃e

m has the
dimension of a two-dimensional field of the perturbation, and following Eq. (10),

Ĉh

1
2
χ̃

e
m = S−1

J

J

∑
j=0

Ψ j ⊗ S j c j χ̃
e
m, j , (26)

where χ̃e
m, j, ∀ j ∈ [1,J], are the components of the vector χ̃e

m and are a set of two-dimensional fields in
grid point space similarly to Eq. (9),

χ̃
e
m =


χ̃e

m,0
χ̃e

m,1
...

χ̃e
m,J

 . (27)
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Note that the vertical correlation matrix C
1
2
j of Eq. (10) has been replaced by a scalar c j in Eq. (26)

since χ̃e
m, j, ∀ j ∈ [1,J] are two-dimensional fields. In that particular case, c j and S j can commute and the

localisation of χ̃e
m becomes

Ĉh

1
2
χ̃

e
m = S−1

J

J

∑
j=0

Ψ j ⊗ c j S j χ̃
e
m, j . (28)

The localisation consists then of defining the appropriate spectral coefficient c j, ∀ j ∈ [1,J].

2.3.2 Limitations of the chosen implementation

If χw is the control variable in the wavelet space for one variable and one level, and n3D and n2D are
respectively the number of 3D and 2D variables in the ’unbalanced’ control vector and nl the number of
vertical levels, then the size of the augmented hybrid control vector for an ensemble of M members is

size
(

χ
h
)

= size(χs)+ size(χe)

= (n3D nl +n2D) size(χw)+M size(χw)

= (n3D nl +n2D +M) size(χw) . (29)

In the current configuration n3D = 5 (vorticity, unbalanced divergence, unbalanced temperature, nor-
malised relative humidity and ozone) and n2D = 1 (logarithm of surface pressure). For nl = 137 levels,
the increase in size for M = 25 members is about 3.6%. For M = 50 members the increase is about 7.3%
and for M = 150 members the increase is about 22%. The choice of having two-dimensional variables
for χe has thus a small overall impact on the size of the control vector.

Yet, even if there is a direct link between the size of the control vector and the global computational cost
of the minimisation of the cost function, it is difficult to estimate how much more expensive would be
a hybrid formulation with three-dimensional fields χ̃e

m, ∀m ∈ [1,M]. For M = 50 members, the size of
the control vector would be about 30 times larger than the current size. It would be nevertheless possible
to reduce the size using for example a coarser resolution in the wavelet space for the variables χ̃e

m. The
methodologies that could be used to reduce the size are not discussed here as they are out of the scope of
this document.

The implementation choice of the hybrid control vector has nevertheless several limitations. Having
two-dimensional variables for χe means that the horizontal localisation has to be the same (i) for all
atmospheric model variables and (ii) for all model levels. These two issues are treated respectively in
sections 3.1.1 and 2.3.3.

The current implementation has no vertical localisation by construction (see Appendix B). Introducing a
vertical localisation means having M three-dimensional fields χe

m, each of them of the size of χs. This
option is not workable in terms of computational cost. Another option would be to apply the square-root
of the vertical localisation Ĉv after the Hadamard-Schur product in Eq. (43),

Be 1
2 χ

e = Ĉv

1
2

M

∑
m=1

xb′
m ◦ ΘĈ

1
2
h χ̃

e
m . (30)

This formulation of the vertical localisation is not strictly correct as it is not an Hadamard-Schur product
in the vertical. Instead, it smooths the increment using a product matrix-vector with a correlation matrix.

Finally we assume that the short forecasts that provide the background perturbations are able to repro-
duce the balance between the atmospheric model variables. This assumption could be relaxed using the
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balance operator K in Eq. (43),

Be 1
2 χ

e = K
M

∑
m=1

xub′
m ◦ ΘĈ

1
2
h χ̃

e
m , (31)

where xub′
m is the unbalanced perturbation xub′

m = K−1 xb′
m , ∀m ∈ [1,M]. This option has not been investi-

gated yet.

2.3.3 Hybrid weight

As previously explained, we have to assume that the horizontal localisation is the same for all the model
levels. One solution to deal with this constraint is to use the hybrid formulation only for a vertical region
of the atmosphere where this assumption is relevant. This can be achieved by tapering the hybrid weight
γe2 towards 0 outside this region.

(a) γs2 = 0 (b) γs2 = 0.25 (c) γs2 = 0.5 (d) γs2 = 0.75

Figure 3: Examples of tapering for the hybrid weights (γs2 in blue and γe2 in red)
when the tapering starts at 200 hPa and finishes at 50 hPa and for different values of
γs2.

Figure 3 presents an example of such a tapering when using the function of Eq. (4.10) from Gaspari et
Cohn (1999) and when using the logarithm of the pressure as a distance. This allows, for instance, to
have a hybrid formulation in the troposphere and in the boundary layer only.

3 Localisation of the background errors

In the previous section we pointed out the importance of the localisation of the background error covari-
ance obtained from a finite number of samples in order to reduce the sampling noise. In this section we
first present the estimation of the localisation length-scale for various atmospheric model variables in the
control vector. We then discuss the implementation of the localisation function.
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3.1 Localisation diagnostics

To estimate the localisation length-scale, we used the program HybridDiag developed by B. Ménétrier
and presented in Ménétrier et Auligné (2015). The estimation is based on an optimal filtering of en-
semble covariances that gives the best fit (Frobenius norm) to the covariance from a hypothetical infinite
ensemble.

We based the estimation on 10 sets of 25 short forecasts for 25 members of an EDA. The 10 sets are
randomly chosen dates in November 2016. The samples were interpolated on a regular 0.35◦× 0.35◦

horizontal grid.

3.1.1 Horizontal localisation

Figure 4a presents the estimated global length-scale of the horizontal localisation for the atmospheric
model variables of the control vector for the surface up to the lower stratosphere. It shows that there
is a large range of values between the variables with the minimum for the divergence and vorticity
(around 50 km) and the maximum for the logarithm of surface pressure (more than 700 km).

Our implementation of the hybrid background error covariance implies that the horizontal localisation
is the same for all atmospheric model variables and all model levels. The range of values found in the
estimates of the horizontal localisation length-scale breaks this assumption. We thus follow an idea from
Berre et al. (2017) that consists in applying a power of the Laplacian operator to the perturbation fields
xb′

m of Eq. (17). We found the best results by applying the Laplacian operator with different powers for
the different variables: 1

4 for the logarithm of surface pressure, −1
4 for the specific humidity and −1

2 for
the vorticity and divergence.

(a) Raw statistics (b) Statistics after transformation

Figure 4: Profiles of the estimated horizontal localisation length-scale for the set
of atmospheric model variables: (a) from 10 sets of 25 EDA members and (b) after
transformation of the members (see text for details on the transformation). The length-
scale for the logarithm of the surface pressure is represented by a dot. The vertical
dotted red line is the profile of the averaged length-scale over the variables and the
full red line is the average over the variables and model levels.

Figure 4b shows that when applying the above transformations based on the Laplacian operator to the
different variables, the range of values for the length-scale of the horizontal localisation is narrower that
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previously. The values are indeed mostly between 100 km and 300 km with an average around 230 km.
Moreover there is not much variation of the values in the vertical. This transformation of the perturbation
fields makes our implementation of the horizontal localisation possible.

Even if the diagnosed length-scale of the horizontal localisation are now closer to each other, they start
to differ and increase from 200 hPa and above. This means that the ability of tapering the hybrid weight
towards zeros could be useful, starting from 200 hPa.

3.1.2 Vertical localisation

Figure 5 presents the diagnosed vertical localisation length-scale from the same sample as previously and
using two vertical coordinates. Using the model levels as the vertical coordinate, the length-scale values
are around 2 model levels for all atmospheric model variables and from 700 hPa upwards (Fig. 5a). The
length-scale for humidity has slightly larger values in the mid-troposphere. The length-scale values of
all variables increase from 700 hPa to the bottom model level, with values up to 14 model levels.

(a) Model level (b) Pressure level

Figure 5: Profiles of the estimated vertical localisation length-scale from 10 sets of
25 EDA members and for the set of atmospheric model variables: (a) length-scale
expressed as model level and (b) length-scale expressed as logarithm of pressure. The
vertical dotted red line is the profile of the averaged length-scale over the variables
and the full red line is the average over the variables and model levels.

Using the logarithm of pressure the vertical coordinate, the length-scale values are less homogeneous
in the mid-troposphere (Fig. 5b). On the other hand there are less differences between the two regions
above and below 700 hPa.

We discussed section 2.3 that our implementation does not allow the vertical localisation per se but
applying a vertical localisation on the resulting increment of Be 1

2 χe is still possible. In that particular
case, it would be possible to have a different localisation for each atmospheric model variable and each
model level. Nonetheless, the implementation of a vertical localisation operator with the same length-
scale for all variables is easier. The choice of the model level for the vertical coordinate seems better as
the spread of values for the length-scales between the variables is reduced. In that case, one has to use a
profile of vertical length scales.
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3.2 Localisation parametrisation

We presented in section 2.3 the proposed implementation of the horizontal localisation using the wavelet
formulation. We showed that we only need to specify the coefficients c j, ∀ j ∈ [0,J], of Eq. (26). Fol-
lowing Weaver et Mirouze (2013), the spectral coefficients c j, ∀ j ∈ [0,J], of an isotropic homogeneous
Gaussian correlation on the sphere are

c j =
γ

4π a2

√
2 j+1 exp

(
− κ

a2 j ( j+1)
)
, (32)

where the normalisation constant is

γ = 4π a2

[
∞

∑
j=0

(2 j+1)exp
(
− κ

a2 j ( j+1)
)]−1

. (33)

The coefficient κ is the diffusion coefficient of the two-dimensional diffusion equation that represents
the correlation. It is linked to Daley length-scale Lg of the Gaussian function by

κ =
Lg

2

2
(34)

Figure 6 presents the horizontal localisation functions obtained with various values of Lg as diagnosed
from the wavelet formulation. In this example the truncation J is the wavenumber 95. The wavelet for-
mulation allows to well represent the Gaussian correlation function overall. The ripples in the diagnosed
function for the length-scale of 150 km are due to the truncation. A truncation J at the wavenumber 95
corresponds to a regular horizontal grid of about 200 km×200 km, which is larger than the length-scale
of 150 km. When the length-scale becomes larger than the horizontal grid resolution associated with the
truncation, then the ripples disappear.

4 Single observation experiment

This section presents the results obtained with the new formulation for the hybrid background errors
when a single observation is assimilated at the beginning of the assimilation window. We choose a
temperature observation located at the same coordinates as the one used previously in the document
(50◦N,0◦E) and at about 900 hPa. We are using the same basic settings for all the experiments presented
hereafter.

The new formulation of the background errors is used only for divergence, vorticity, temperature, hu-
midity and logarithm of surface pressure and not ozone. This choice is motivated by the fact that we are
using the same variables χe

m, ∀m ∈ [1,M] to multiply with the perturbations of the atmospheric model
variables. We thus implicitly assume that the model variables are correctly cross-balanced for each per-
turbation. Ozone is weakly coupled with the other model variables through the transport and there is no
dynamical nor physical feedback from ozone. For this reason we believe that the balance between ozone
and the other variables may not be accurate in the model and we prefer not to use ozone in the new hybrid
formulation.

The single observation experiments are all using a single outer loop at the resolution of Tco 399. The
inner loop resolution is Tl 255. We retrieved the EDA members at the resolution of the inner loop and we
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Figure 6: Example of horizontal localisation functions implemented in the wavelet
formulation (solid lines) for 3 length-scales: 150 km (dark blue), 300 km (blue) and
600 km (light blue). The dash lines are for the Gaussian functions of the same length-
scale.

used 25 members. In order to increase the ensemble sample and reduce the noise, we also tested tripling
the ensemble size by using the ensemble members from the same EDA but with a time-lag of ±3 hours.

The horizontal localisation uses a length-scale of 200 km and the ensemble perturbations are transformed
using the Laplacian function (sec 3.1.1) unless specified otherwise. When activated, the vertical locali-
sation operator uses a profile of vertical length-scale that comes from the mean length-scale for all the
used model variables and model levels.

We are using the vertical tapering of the hybrid weight (sec. 2.3.3). It starts at 200 hPa and finishes at
100 hPa. This coincides with approximately the tropopause region. The starting pressure level corre-
sponds to the level where the localisation statistics start to differ between the atmospheric model vari-
ables (sec. 3.1). The tapering is sharp in the pressure region between 200 hPa and 100 hPa in order to
decorrelate the troposphere and the stratosphere in the hybrid formulation.

Table 2: List of the single observation experiments and details on their configuration.
The first column is the name used in the document to refer to the experiment.

Exp. Name Weight Mem. Vert. Loc. Comment
STATIC γe2 = 0% - - Static background errors
HYB 100 25m γe2 = 100% 25 off Full flow-dependent background errors
HYB 100 75m γe2 = 100% 75 off Same as HYB 100 25m with more members
HYB 50 75m γe2 = 50% 75 off Same as HYB 100 25m with more static weight
HYB 75 75m γe2 = 75% 75 off Same as HYB 100 25m with more static weight
HYB 50 75m vloc γe2 = 50% 75 on Same as HYB 50 75m with vertical localisation
HYB 75 75m vloc γe2 = 75% 75 on Same as HYB 75 75m with vertical localisation
OPER LIKE - - - Similar configuration as for operations
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The list of the experiments we have run and we discuss hereafter is detailed in Table 2. The OPER LIKE

experiment mimics the operational setting regarding the background errors using the statistics of the day.
The STATIC experiment uses background error standard deviations that have been averaged over a period
of 5 months and background error correlations computed with EDA members of the past.

4.1 Initial results

For a scalar problem where the background error standard deviation is σb, the observation error standard
deviation is σo and the innovation is do,b, the analysis increment δ a is

δ
a =

σb2

σb2
+σo2

do,b . (35)

In our three-dimensional framework with a single observation, this expression is a crude estimation and
should be regarded as such (see Appendix C for more details). Nevertheless, it provides an insight
on the expectation for the analysis increment. Using 25 members of the used EDA, we computed the
background error standard deviation at the point the closest to the observation and the value is σb =
0.19K. With our setting where σo = 0.5K and do,b = −1.5K, the increment should be of the order of
δ a ≈−0.2K according to Eq. (35).

For the STATIC and OPER LIKE experiments, the computation is slightly different. Indeed, the back-
ground error standard deviation is computed from the unbalanced part of the temperature and at a differ-
ent resolution: Tl 159 while the inner loop resolution is Tl 255. The unbalanced temperature background
error standard deviation at the point the closest to the observation for the OPER LIKE experiment is about
0.17K and then a rescaling factor of 1.6 is apply to account for the change of resolution. This would
result in an increment on the unbalanced temperature of the order of −0.34K. Moreover Bonavita et al.
(2012) showed that the balanced part of the temperature increment accounts for about 20% of the to-
tal increment, which would lead to an increment of ≈ −0.4K. We also rescaled the background error
standard deviation of the STATIC experiment so it is similar to the one of the OPER LIKE experiment.

(a) Temperature (b) Humidity (c) U wind (d) V wind

Figure 7: Profiles of increments at the location of the temperature observation for the
atmospheric model variables and for different experiments (see Tab. 2 for details).
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Figure 7 presents the profiles of the increment for the atmospheric model variables at the location of
the observation and for the experiments with a hybrid weight of γe2 = 100%. Vorticity and divergence
have been replaced by the U and V components of wind. As expected from the above discussion on
the increment value at the observation location, the amplitude of the temperature increment from the
HYB 100 25m experiment is smaller than for the STATIC and the OPER LIKE experiments (Fig. 7a). The
shape of the increment close to the observation altitude is also different with positive values above the
observation altitude in the HYB 100 25m experiment. This positive peak of the temperature increment
corresponds to where there are inversions in the temperature profile in the background. The hybrid
formulation is able to capture this information.

However, there are vertical fluctuations in the HYB 100 25m experiment at the pressure levels where the
two other experiments (STATIC and OPER LIKE) have a zero-value increment. This is true not only for
temperature but for all model variables (Figs. 7b to 7d). This issue is discussed in the following sections.

The profiles of humidity increment also differ a lot between the hybrid experiment on one hand and the
STATIC and OPER LIKE experiments on the other hand. This is due to the balance operator used for
these last two experiments (Figs. 8i to 8l). Indeed, the effect of balance operator K results in putting the
humidity increment at the level of the observation away from the observation location, in regions where
the background humidity is higher than a threshold and where we have saturation (see Appendix D).
In the meantime, the humidity increment of the hybrid experiments is located in the vicinity of the
observation location due to the horizontal localisation.

The horizontal localisation in the hybrid experiments also imposes to have the increments of the other
variables localised in the vicinity of the observation location (Figs. 8b, 8f, 8n, and 8r). Concurrently,
for the OPER LIKE experiment, significant increments can be found far away, like in the Atlantic ocean
(Figs. 8d, 8h, 8p, and 8t). This is the consequence of high (positive or negative) values of the standard
deviation in these regions and it can not be avoided in the current formulation of the background errors.

Generally, the horizontal shape of the increments from the hybrid experiments is more anisotropic than
the shape the two other experiments (Fig. 8). This could come from both the flow-dependent information
and the noise due to the sampling of the background statistics with a small number of members.

4.2 Impact of the time lag in the ensemble members

Increasing the number of members to 75 using the time lag of the EDA members does not change much
the temperature increment and the fluctuations above 700 hPa are still present (Fig. 7a). The amplitude
of the fluctuations is however smaller with 75 members than with 25 members in the increment profiles
of U and V components of wind (Figs. 7c and 7d). In both cases, the increments are still very noisy when
compared to the STATIC and OPER LIKE experiments.

The noise in the profiles is expected for two reasons. First, 25 members or even 75 members are too
small a number to have a sufficiently reduced sampling noise. Secondly, we are using the same variables
χe

m for all the levels and all the variables. With 25 or even 75 of these variables, we may not have enough
degrees of freedom to produce a correct increment of temperature around the observation location and a
zero increment above 700 hPa for all variables.

Looking at the pressure level of the observation, the noise in the shape of the increments seems to be
reduced going from 25 members to 75 members (Fig. 8). This is particularly true for the temperature
(Figs. 8b and 8c) and the logarithm of the surface pressure (Figs. 8f and 8g). Most of the increments
still keep a more anisotropic shape in the HYB 100 75m experiment than for the STATIC. This means
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TEMPERATURE

(a) STATIC (b) HYB 100 25m (c) HYB 100 75m (d) OPER LIKE

LOGARITHM SURFACE PRESSURE

(e) STATIC (f) HYB 100 25m (g) HYB 100 75m (h) OPER LIKE

HUMIDITY (SPECIFIC)

(i) STATIC (j) HYB 100 25m (k) HYB 100 75m (l) OPER LIKE

U COMPONENT OF WIND

(m) STATIC (n) HYB 100 25m (o) HYB 100 75m (p) OPER LIKE

V COMPONENT OF WIND

(q) STATIC (r) HYB 100 25m (s) HYB 100 75m (t) OPER LIKE

Figure 8: Increments from a single temperature observation located at (50◦N,0◦E)
and at about 900 hPa on 31 October 2016 at 21:00. From top to bottom: tempera-
ture (in K), logarithm of surface pressure (in ln(hPa)), humidity (in µg.g−1), U and V
components of wind (in m.s−1). From left to right: various experiments (see Tab. 2
for more details). All increments are plotted at the model level the closest to 900 hPa
except for the surface pressure.
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that the new hybrid formulation can bring flow-dependent information. Moreover the flow-dependent
information is different than the one currently used as the increments between the HYB 100 75m and
OPER LIKE experiments are still significantly different.

4.3 Impact of the hybrid weight

The principle of hybrid background errors is to have a flow-dependent part derived from the ensemble
members regularised by a static part. The program HybridDiag also provides an optimal weight under
the same assumptions used for the optimal localisation (see Section 3.1). With our configuration, Hy-
bridDiag produces an optimal weight of about γe2 = 75% for the flow-dependent part and with variations
lower than 10% between the model levels and the model variables (results not shown). This section dis-
cusses the results obtained when the hybrid weight is γe2 = 50% (equal weight) or γe2 = 75% (more
weight to the ensemble part and closer to the diagnostic of HybridDiag).

Figure 9 presents the new profiles of increment when using 75 members and with the two different hybrid
weights. In both cases, the addition of a static component in the background error allows to reduce the
unsatisfactory fluctuations in the profiles far from the observation location. Yet, some flow-dependent
information is kept in the hybridisation process.

(a) Temperature (b) Humidity (c) U wind (d) V wind

Figure 9: Same as Fig.7 but with different hybrid weights for the hybrid experiments:
γe2 = 50% (full red line) and γe2 = 75% (dashed red line).

4.4 Impact of the vertical localisation

In section 2.3 we explained that the chosen implementation of the new hybrid background error formu-
lation disables the possibility to have a vertical localisation. We proposed an alternative to mimic the
behaviour of the vertical localisation. For simplicity, hereafter we refer to this alternative solution as
vertical localisation.

The vertical localisation should help to further reduce the noise in the increment profiles. It does reduce
the noise but it does not help reducing the increment towards zero above 700 hPa (Fig. 10). Moreover
the extremes values of the increments are amplified. For example, when the increment of the U com-
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(a) Temperature (b) Humidity (c) U wind (d) V wind

Figure 10: Same as Fig.9 but with vertical localisation for the hybrid experiments.

ponent of wind between 300 hPa and 400 hPa is zero for the STATIC, it is about −0.05 m.s−1 in the
HYB 500 75m experiment and becomes close to −0.1 m.s−1 when using the vertical localisation in the
HYB 500 75m vloc experiment.

These side effects of our implementation of the vertical localisation are expected since we are basically
smoothing the increment profiles over few vertical levels. If the raw increment is for example negative
over several model levels as for the U component of wind between 300 hPa and 400 hPa (about 8 model
levels), then the smoothing over few vertical levels (about 2 model levels) is just producing a smooth
version of the raw negative increment. The smoothing is therefore not able to nullify the increment in
our case where the vertical localisation length-scale is smaller than the scale of the vertical structures of
the noise found in the increments.

5 Summary

In this document we have described a new formulation of the hybrid background errors in the IFS. As in
the current approach, the new formulation is hybrid since it combines flow-dependent information and
climatological (or static) information. In the new formulation we are making use of the EDA members
of the day to directly compute the background errors. The implementation algorithm was described. It
consists in augmenting the wavelet control vector with a series of two-dimensional fields χe

m, ∀m∈ [1,M],
where M is the number of used EDA members.

To illustrate the behaviour of the new formulation, we presented the assimilation of a single observation
of temperature located at the beginning of the assimilation window. This setting puts emphasis on the
background errors. We compared several experiments using the new formulation with two reference
experiments that have the same configuration but for the background error. The first reference experiment
called STATIC is based on the static background errors which is also used in the new hybrid formulation.
The second reference experiment called OPER LIKE mimics the usage of the background errors of the
day we have currently in operations.
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In order to reduce the computational cost of the new formulation, the new variables χe
m, ∀m ∈ [1,M] of

the control vector are used to account for the background errors of all the atmospheric model variables
(divergence, vorticity, temperature, specific humidity and logarithm of surface pressure) and all model
levels altogether. This is a strong constraint on the chosen implementation of the new formulation. We
showed with the single observation experiment that with this choice the analysis produces unrealistic
fluctuations in the profiles of increment far from the observation level. Moreover, this also assumes that
the balance between the model variables is correct.

We also showed that we need to apply a localisation to the estimated background errors in order to reduce
the sampling noise. We presented some diagnostics of the vertical and horizontal localisation length-scale
computed from 10 sets of 25 EDA members. The diagnostics suggest very different horizontal length-
scales for the atmospheric model variables of which we want to represent the background errors. We thus
propose a transformation of the EDA members based on the Laplacian operator. The localisation is one
obvious advantage of the new formulation since it constrains the increment to be in the vicinity of the
observation while in the current approach large increments could be found far away from the observation
location for some atmospheric model variables.

With the chosen implementation of the new hybrid background errors, the two-dimensional fields χe
m are

valid for all model levels. Therefore we can not have a vertical localisation. Instead we propose to mimic
the behaviour of the vertical localisation by applying a correlation function on the vertical increment.
We showed that this implementation is effective in smoothing the profiles of increment but ineffective in
removing the unrealistic fluctuations in the profiles. Therefore the usefulness of this should be revisited
when a full set of observation is assimilated. We should also investigate in parallel the implementation
using three-dimensional fields χe

m. This would increase the size of the control vector by too much and
methods to reduce the size should be explored.

To reduce the sampling noise, we increased by a factor of three the number of used members by using
the EDA members shifted in time by ±3 hour. We showed that this helps to reduce the noise, espe-
cially regarding the horizontal shape of the increment. Even though this proves to be helpful, this is not
completely satisfactory. In case of local events like tropical cyclones, the local covariance could change
rapidly during a time window of 6 hours. The next step would be to use a time lag of ±1 hour instead of
±3 hour. In parallel, we are running some tests of an EDA with 50 members instead of 25 members. We
plan to rerun the diagnostics of the localisation on the 50 members and to assess if we need the time lag
or not.

By tripling the number of members in the new formulation, we could reduce the unrealistic fluctuations in
the profiles of increment far from the observation level. We reduced them further with the hybridisation
of the background error. By adding already 25% of static error, the noise is indeed greatly reduced. We
now have to run experiments with the full observing system and over a long period, and with various
hybrid weights to assess the optimal value of the weight.

Before running experiments over a long period of time, we need to (i) test the assimilation of the full
observing system and (ii) test the implementation in a configuration with several outer loops. We already
tested the assimilation of the full observing system and the results are encouraging. We are currently
working on the implementation of the outer loop facility. The choice of the resolution of the perturbations
as well as the choice of the localisation length-scale for each loop have to be investigated.

The strongest assumption of our implementation of the new formulation for the hybrid background errors
in the IFS is the choice of the same χe

m variables for all model levels and for all model variables. For
the longer term developments, we could imagine having different set of χe

m variables for different part
of the atmosphere (boundary layer, free troposphere and stratosphere) or different set of model variables
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(physical variables and chemical variables like ozone). For that, more work is needed on the balance be-
tween the model variables and in particular to decide if we should apply the localisation on the balanced
or unbalanced variables.

Regarding the horizontal localisation, the current implementation assumes a constant length-scale in
space. We choose the wavelet approach for the implementation of the horizontal localisation to be able to
have a localisation with a length-scale that varies spatially and that could also vary with the wavenumber.
The benefit of using such a localisation will be assessed in the near future.
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Appendix A Computation of the vertical correlation in the wavelet space

The background error correlation operator in the IFS is formulated in the wavelet space. For that purpose,
a vertical correlation matrix is computed for each “cutoff” wavenumber N j of the wavelet decomposition,
with j ∈ [0,J]. As explained in the section 1.2, each wavenumber N j is associated with its own horizontal
grid. These horizontal grids are currently all coarser than the horizontal grid used in the EDA. As a
consequence, we have several cells of the EDA grid Ge included in a cell of the grid G j associated with
the wavenumber N j for any j ∈ [0,J].

M membersEDA grid

M x Mj membersCorrelation matrix

grid G j

Ge

Figure A.1: Basic example of a horizontal grid used for the correlation matrix with
the wavelet formulation (blue) and the horizontal grid used for the EDA (black). In
this example, we have M j=9 grid cells of the EDA grid included in G j (blue shade).

For each cell of Ge, we have M members from the EDA and thus M samples of the background. If M j

is the number of grid cells of Ge included in G j, them we have M ×M j samples per grid cell of G j

(Fig. A.1). Let us denote xub
k,m,t the mth element of vector composed with all the unbalanced background

vectors included in G j and for the level k and time t. The index m belongs to the interval [1,M×M j] and
therefore depends on the wavenumber N j, but the dependence is omitted for simplicity.

The sample is further increased using not only the EDA members at the analysis time but also the mem-
bers with times around the analysis time. Currently we are using a time-lag up to 3 hour and a time-step
of 1 hour. This corresponds to a number of times equal to Mt = 7.

We are using the M×M j ×Mt samples of the background to compute a vertical correlation matrix of the
background error in each cell of G j. For instance, the element of the column k and row l of this matrix is
the correlation between the model levels k and l and is computed as

ce
j (k, l) =

1
σ v

k σ v
l

Mt

∑
t=1

M×M j

∑
m=1

(
xub

k,m,t − xub
k

)(
xub

l,m,t − xub
l

)
, (36)

where · denotes the mean and σ the standard deviation, both computed using the M×M j ×Mt samples.

Appendix B Two-dimensional augmented variable

The new hybrid formulation requires to compute the product of the square root of the ensemble-based
localised background error Be with the augmented part of the control vector χe as

Be 1
2 χ

e = D̂Ĉ
1
2 χ

e , (37)

where D̂ and Ĉ are detailed in section 2.3. Here, χe has the dimension M × (n3D nl +n2D)× size(χw)
(using notation from section 2.3.2). For simplicity in the notations, we define Nw = size(χw).
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We assume that the M variables χe
m, ∀m ∈ [1,M], are not correlated to each other. We also assume that

the localisation is the same for each χe
m variable. In that case Ĉ

1
2 is block diagonal and each block is

identical to each other and we refer to it as Ĉ
1
2
χ

Ĉ
1
2 χ

e =


Ĉ

1
2
χ χe

1

Ĉ
1
2
χ χe

2
. . .

Ĉ
1
2
χ χe

M

 , (38)

In order to reduce the cost of the new method, we decided to have the same χe
m variables for each control

variables and for each level of the control variable. We call this new variables χ̃e
m, ∀m ∈ [1,M] and the

transformation from χ̃e
m towards χe

m is done through the operator Θ,

χ
e
m = Θ χ̃

e
m . (39)

Note that for each m∈ [1,M] the dimension of χ̃e
m is Nw while the dimension of χe

m is (n3D nl +n2D)×Nw.
If 1 and 0 are vectors of dimension (n3D nl +n2D), respectively filled with 1 and 0, then the matrix Θ

becomes

Θ =


1 0 · · ·
0 1 0

. . .
· · · 0 1

 . (40)

Using the transformation by Θ each bock of the Ĉ
1
2
χ χe

m matrix of Eq. (38) becomes

Ĉ
1
2
χ χ

e
m = Ĉ

1
2
χ Θχ̃

e
m . (41)

With the hypothesis that χ̃e
m, ∀m ∈ [1,M], is the same for all vertical levels, there is no sense to have

vertical correlation. If we assume that the horizontal correlation is the same for each χ̃e
m variables and if

Ĉ
1
2
h denotes this Nw ×Nw horizontal correlation, then the previous equation could be rewritten

Ĉ
1
2
χ χ

e
m = ΘĈ

1
2
h χ̃

e
m . (42)

Note that we have commuted the correlation operator and the Θ operator. This means that for each
member m ∈ [1,M], we apply the horizonal localisation of the variable χ̃e

m and then we can propagate
this on all variables and all levels. This can be extended to the initial product of Eq. (37) using the
particular form of D̂ from Eq. (24),

Be 1
2 χ

e =
M

∑
m=1

xb′
m ◦ ΘĈ

1
2
h χ̃

e
m . (43)

Appendix C Single observation experiment

In this appendix, we want to document the impact of the correlation length-scale and the impact of the
interpolation of the observation location on the increment in the case of a single observation. To simplify
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the problem, we assume the one-dimensional case where the observation operator H consists only in a
space interpolation. If the location of the observation y is between the grid-points k and k+1 and if we
perform a linear interpolation between the two grid-points, then the observation operator if full of zeros
but for its indexes k and k+1,

H = 0 , · · · , 0 , 1−α , α , 0 , · · · , 0
( )

k−1 k k+1

. (44)

The parameter α is for the linear interpolation. A value of 1 would mean that the observation is exactly on
the grid-point k. A value of 0.5 would mean that the observation is exactly in between the two grid-points
k and k+1.

The analysis increment δxa = xa −xb given by the best linear unbiased estimate is

δxa = K(y−Hxb) , (45)

where xa is the analysis, xb is the background. The operator K is the gain matrix that can be expressed
as a function of the observation operator, the background error covariance matrix B and the observation
error covariance matrix R,

K = BHT [HBHT +R
]−1

. (46)

For this example, we assume that the background error are Gaussian with a standard deviation σ2
b , and a

correlation length-scale L. The element (i, j) of B is denoted bi, j and is expressed as

bi, j = σ
2
b ci, j (47)

= σ
2
b e−

(‖i− j‖δx)2

2L2 , (48)

In this one-dimensional case, the BHT matrix become a vector, and its ith element is(
BHT)

i = (1−α) bi,k +α bi,k+1 . (49)

If we left-multiply this BHT vector by H, we compute the scalar

HBHT = (1−α) [(1−α) bk,k +α bk,k+1]+α [(1−α) bk+1,k +α bk+1,k+1] (50)

= σ
2
b

[
(1−α)2 +2α (1−α) ck,k+1 +α

2
]
. (51)

Adding to this the observation error R ≡ σ2
o for the single observation, we have the denominator part of

the gain matrix.

To compute the analysis increment, we first need to compute the innovation d = y−Hxb. With the
particular form of H, we have

d = y−
[
(1−α) (xb)k +α (xb)k+1

]
, (52)

where (xb)k and (xb)k+1 are respectively the kth and (k+1)th elements of the background vector xb.

We are interested in how the increment at the closest grid point to the analysis evolves with the interpo-
lation coefficient α or the length-scale of the background error correlation. From the analysis increment
δxa, we extract the kth element

(δxa)k =

σ2
b

[
(1−α)+α e−

δx2

2L2

]
σ2

o +σ2
b

[
(1−α)2 +2α (1−α) e−

δx2

2L2 +α2

]d (53)
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Figure C.1: Impact of the interpolation coefficient α and of the length-scale L
δx of the

background error correlation on the analysis increment in the grid point the closest to
the single observation.

Figure C.1 presents the sensitivity of (δxa)k of Eq.(53) with α and L in the particular case where σ2
b =σ2

o
and the innovation d of Eq.(52) is independent of α (true if (xb)k = (xb)k+1) and equal to 1.

First of all, if the observation is located exactly on the grid point corresponding to the index k, then
α = 0. The analysis increment in that grid point is independent to the length-scale of the background
error correlation and is equal to 0.5 in our particular configuration.

For a given α 6= 0, the analysis increment in the nearest grid point of the observation tends to 0.5 when
the length-scale of the background error correlation increases. For an observation in the middle of two
grid points (α = 0.5) and a length-scale of the background error correlation of the same order of the grid
point, then the increment is about 0.44.
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Appendix D Saturation adjustment and humidity increment

In the current formulation of the balance operator K, the saturation adjustment is active when the relative
humidity is larger than a threshold of 80%. In that situation, a temperature increment is spread into
a specific humidity increment. For the single observation experiment presented in this document, the
observation is located in a region where the relative humidity is lower than 80% (Fig. D.1a).

(a) Reference (b) Test

Figure D.1: Background values of relative humidity (in %) for two regions at 900 hPa
(grey shade). The red line is the 80% contour value which is the selected threshold
for the saturation adjustment, and the red diamond represents the localisation of the
observation.

In the OPER LIKE experiment, the temperature increment still has significant values in regions far from
the observation location but where the relative humidity is larger than 80% (Fig. 8d, page 18). This
results in specific humidity increments that have a similar shape as the relative humidity above 80%
(Fig. 8l, page 18 and Fig. D.1a). We have a similar effect for the STATIC experiment, but the values of
the specific humidity increment are smaller than for the OPER LIKE experiment. Indeed, values of the
temperature increment are also smaller in the regions where we have the saturation adjustment.

We also ran another single observation set of experiments for an observation located in a region where
the relative humidity is larger than 80%, at the coordinates (52.28◦N,24.0◦W ) (Fig. D.1b). Figure D.2
presents the resulting increments for temperature and humidity only and for similar experiments as be-
fore. Note that for this case, there is no rescaling of the standard deviation of the background error in
the STATIC experiment. Yet, the temperature increments have a similar amplitude for all experiments.
The saturation adjustment is now active around the location of the observation and therefore the specific
humidity increment is localised in the surroundings of the observation location in the OPER LIKE and
the STATIC experiments. Interestingly, the specific humidity increment has the opposite sign for the ex-
periments with the new hybrid formulation of the background error and with larger (opposite) values too.
This response of specific humidity to temperature increment is currently under investigation and work is
in progress to improve the balance operator.
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TEMPERATURE

(a) STATIC (b) HYB 50 75m (c) HYB 100 75m (d) OPER LIKE

HUMIDITY (SPECIFIC)

(e) STATIC (f) HYB 50 75m (g) HYB 100 75m (h) OPER LIKE

Figure D.2: Same as Fig. 8 but for a temperature observation located in a region
where the relative humidity is larger than 80% (52◦N,24◦W ).
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