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CESM’s CMIP5 Workflow
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Lessons We Learned From CMIP5
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CESM was the first model to complete their 
simulations, but the last to complete publication.  

Why?
• All of the post-processing was serial and it took a long time to run
• Workflow was error prone and was time consuming to debug
• Too much human intervention was needed between post-processing 

steps and time was wasted
• There was only one person who knew the status of all of the 

experiments
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Motivating Factor
CMIP5 vs CMIP6
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CMIP5

• 25 Experiments
• Timeline: 3 years
• Output size: 800TB
• Published size: 200TB 

CMIP6

• 102 Experiments
• Timeline: 1 year
• Output size: 8PB (estimate)

• Published size: 2PB (estimate)

http://www.bbc.com/earth/story/20170510-terrifying-20m-tall-rogue-waves-are-actually-real
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New CESM/CMIP6 Workflow
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Data Compliance
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Taking model output and processing it into experiment compliant data
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Previous Version Used for CMIP5
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• Used Fortran and CMOR to read in the raw output, do 
all conversions, and write out complaint files

• Serial, no parallelization

Slow
Rigid and Hard to Expand

Error Prone
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PyConform: New Version Used for 
CMIP6
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• Uses Python
netCDF4, numpy, dreqPy, cf_units, pyNGL

• Parallelization done with MPI4Py

• A three step process

Faster 
Flexible User Interface

(16x to 38x speedup over Fortran method)
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First Step  

9

Users need to create a text file with definitions that 
describe how to map model variables to requested 
variables

Examples:
cfc11global=f11vmr
ch4=vinth2p(CH4, hyam, hybm, plev, PS, P0)
mc=CMFMC+CMFMCDZM
siage=siage
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Second Step  
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Then users run the iconform tool that matches the 
definitions to its variable information within the 
CMIP6 Data Request

The Data Request lists variable requirements:
• Units
• Dimensions
• Descriptions
• Positive Attribute on Vertical Dimensions
• And a lot more …
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Sample Portion of a PyConform Input File
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"ua": {
"attributes": {

"_FillValue": "1e+20",

"cell_measures": "area: areacella",

"cell_methods": "time: mean",

"comment": "\"Eastward\" indicates a 
vector component which is positive when directed 
eastward (negative westward). Wind is defined as a 
two-dimensional (horizontal) air velocity vector, 
with no vertical component. (Vertical motion in 
the atmosphere has the standard name 
upward_air_velocity.)",

"description": "\"Eastward\" indicates 
a vector component which is positive when directed 
eastward (negative westward). Wind is defined as a 
two-dimensional (horizontal) air velocity vector, 
with no vertical component. (Vertical motion in 
the atmosphere has the standard name 
upward_air_velocity.)",

"frequency": "mon",

"id": "ua",

"long_name": "Eastward Wind",

"mipTable": "Amon",

"out_name": "ua",

"prov": "Amon ((isd.003))",

"realm": "atmos",

"standard_name": "eastward_wind",

"time": "time",

"time_label": "time-mean",

"time_title": "Temporal mean",

"title": "Eastward Wind",

"type": "real",

"units": "m s-1",

"variable_id": "ua"
},
"datatype": "real",

"definition": "vinth2p(U,hyam,hybm,plev, 
PS,P0)",
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Third Step  
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Then users run the xconform tool that generates 
requested variables based on the input 
specifications

“x = X1 + X2”Read:
X1[i]

Read:
X2[i]

Evaluate:
(X1+X2)[i]

Map:
iàj

Validate:
> minimum
< maximum

dimensions = [j]
et	cetera

Write:
x[j] File

“y = X1 - X2”

Read:
X1[i]

Read:
X2[i]

Evaluate:
(X1-X2)[i]

Map:
iàj

Validate:
> minimum
< maximum

dimensions = [j]
et	cetera

Write:
y[j] File
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Physarray Object
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• Is a subclass of the maskedArray in NumPy

• Additional features that were needed above the 
masked array class:

- Automatic Unit Conversion
- Automatic Dimension Handling
- Automatic Handling of the Positive Attribute
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Physarray Object
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“X = X1 + X2”
Units: 

K + Units: 
K

“X” = Units: 
K

“X = X1 + X2”
Units: 

K + Units: 
C

“X” =

Units: 
K

Convert to K before 
operation is performed

“X = X1 * X2”
Units: 

kg * Units: 
m-2

“X” = Units: 
kg m-2

* Must be cf compliant units

Units: 
K + Units: 

K

Units: 
K =

Units: 
K = =Units: 

kg m-2

Extra features we needed to generate the data correctly:
Automatic Unit Handling
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Physarray Object
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“X = X1 + X2”

+

“X” =

“X = X1 + X2”

Switch the dimensions 
before operation is 
performed

Dims: 
Time
Lat
Lon
Lev

=

Dims: 
Time
Lat
Lon
Lev

Dims: 
Time
Lat
Lon
Lev

Dims: 
Time
Lat
Lon
Lev

+

“X” =

Dims: 
Time
Lat
Lon
Lev

=

Dims: 
Time
Lat
Lon
Lev

Dims: 
Lev
Lat
Lon

Time

Dims: 
Time
Lat
Lon
Lev

Extra features we needed to generate the data correctly:
Automatic Dimension Handling

Dims: 
Time
Lat
Lon
Lev

“X = X1 + X2”

+=
Dims: 
Time
Lat
Lon

Dims: 
Time
Lat
Lon

Will give an error

Dims: 
Time
Lat
Lon
Lev

Dims: 
Time
Lat
Lon
Lev

+
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Physarray Object
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“X = X1 + X2”
Pos: 
up + Pos: 

up

“X” = Pos: 
up

“X = X1 + X2”
Pos: 
up + Pos: 

down

“X” =

Pos: 
up

Convert before 
operation is performed

Pos: 
up + Pos: 

up

Pos: 
up = Pos: 

up =

Extra features we needed to generate the data correctly:
Automatic Handling of the Positive Attribute

(flipping the vertical dimension)
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Switching to Xarray/Dask
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• We are working on a new version that uses 
xarray

• While we no longer need the ability to handle 
dimension reordering, we still need functionality 
to handle the unit conversion and the flipping of 
the vertical dimension

• We will also need to evaluate the performance



Parallel Python Tools for Handling Big Climate Data air • planet • people

Moving Forward ….
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• We are currently using PyConform in its current 
form for our CMIP6 output

• We are looking at a redesign of the internal data 
structures to use new capabilities that didn’t 
exist when we started the project

• Performance and usability are key for this tool 
and we will move in those directions
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Questions

Contact: mickelso .at. ucar.edu
https://github.com/NCAR/PyConform

Big Data

http://m.sweetclipart.com/halloween-pumpkin-pail-with-candy/


