
air • planet • people

Parallel Python Tools for Handling
Big Climate Data

Sheri Mickelson
Kevin Paul

2018 Workshop on Developing Python Frameworks for Earth System Sciences
October 30, 2018

NCAR/CISL/TDD

Parallel Python Tools for Handling Big Climate Data air • planet • people

CESM’s CMIP5 Workflow

2

Model Run

Publication

Post-
Processing

CESM Model
Run

Time Series
Conversion

(NCO)

CMOR

Diagnostics
(NCO/NCL)

Push to ESGF

Parallel Python Tools for Handling Big Climate Data air • planet • people

Lessons We Learned From CMIP5

3

CESM was the first model to complete their
simulations, but the last to complete publication.

Why?
• All of the post-processing was serial and it took a long time to run
• Workflow was error prone and was time consuming to debug
• Too much human intervention was needed between post-processing

steps and time was wasted
• There was only one person who knew the status of all of the

experiments

Parallel Python Tools for Handling Big Climate Data air • planet • people

Motivating Factor
CMIP5 vs CMIP6

4

CMIP5

• 25 Experiments
• Timeline: 3 years
• Output size: 800TB
• Published size: 200TB

CMIP6

• 102 Experiments
• Timeline: 1 year
• Output size: 8PB (estimate)

• Published size: 2PB (estimate)

http://www.bbc.com/earth/story/20170510-terrifying-20m-tall-rogue-waves-are-actually-real

Parallel Python Tools for Handling Big Climate Data air • planet • people

New CESM/CMIP6 Workflow

5

Model Run

Publication

Post-
Processing

CESM Model
Run

Time Series
Conversion

(PyReshaper)

New Data
Compliance

Tool
(PyConform)

Re-Designed
Diagnostics

(PyAverager)

Push to ESGF

A
ut

om
at

ed
 W

or
kf

lo
w

 U
si

ng
 C

yl
c

Experiments
Update

Their Status in
Run Database

The
focus of
this talk

Parallel Python Tools for Handling Big Climate Data air • planet • people

Data Compliance

6

Taking model output and processing it into experiment compliant data

Parallel Python Tools for Handling Big Climate Data air • planet • people

Previous Version Used for CMIP5

7

• Used Fortran and CMOR to read in the raw output, do
all conversions, and write out complaint files

• Serial, no parallelization

Slow
Rigid and Hard to Expand

Error Prone

Parallel Python Tools for Handling Big Climate Data air • planet • people

PyConform: New Version Used for
CMIP6

8

• Uses Python
netCDF4, numpy, dreqPy, cf_units, pyNGL

• Parallelization done with MPI4Py

• A three step process

Faster
Flexible User Interface

(16x to 38x speedup over Fortran method)

Parallel Python Tools for Handling Big Climate Data air • planet • people

First Step

9

Users need to create a text file with definitions that
describe how to map model variables to requested
variables

Examples:
cfc11global=f11vmr
ch4=vinth2p(CH4, hyam, hybm, plev, PS, P0)
mc=CMFMC+CMFMCDZM
siage=siage

Parallel Python Tools for Handling Big Climate Data air • planet • people

Second Step

10

Then users run the iconform tool that matches the
definitions to its variable information within the
CMIP6 Data Request

The Data Request lists variable requirements:
• Units
• Dimensions
• Descriptions
• Positive Attribute on Vertical Dimensions
• And a lot more …

Parallel Python Tools for Handling Big Climate Data air • planet • people

Sample Portion of a PyConform Input File

11

"ua": {
"attributes": {

"_FillValue": "1e+20",

"cell_measures": "area: areacella",

"cell_methods": "time: mean",

"comment": "\"Eastward\" indicates a
vector component which is positive when directed
eastward (negative westward). Wind is defined as a
two-dimensional (horizontal) air velocity vector,
with no vertical component. (Vertical motion in
the atmosphere has the standard name
upward_air_velocity.)",

"description": "\"Eastward\" indicates
a vector component which is positive when directed
eastward (negative westward). Wind is defined as a
two-dimensional (horizontal) air velocity vector,
with no vertical component. (Vertical motion in
the atmosphere has the standard name
upward_air_velocity.)",

"frequency": "mon",

"id": "ua",

"long_name": "Eastward Wind",

"mipTable": "Amon",

"out_name": "ua",

"prov": "Amon ((isd.003))",

"realm": "atmos",

"standard_name": "eastward_wind",

"time": "time",

"time_label": "time-mean",

"time_title": "Temporal mean",

"title": "Eastward Wind",

"type": "real",

"units": "m s-1",

"variable_id": "ua"
},
"datatype": "real",

"definition": "vinth2p(U,hyam,hybm,plev,
PS,P0)",

Parallel Python Tools for Handling Big Climate Data air • planet • people

Third Step

12

Then users run the xconform tool that generates
requested variables based on the input
specifications

“x = X1 + X2”Read:
X1[i]

Read:
X2[i]

Evaluate:
(X1+X2)[i]

Map:
iàj

Validate:
> minimum
< maximum

dimensions = [j]
et	cetera

Write:
x[j] File

“y = X1 - X2”

Read:
X1[i]

Read:
X2[i]

Evaluate:
(X1-X2)[i]

Map:
iàj

Validate:
> minimum
< maximum

dimensions = [j]
et	cetera

Write:
y[j] File

Parallel Python Tools for Handling Big Climate Data air • planet • people

Physarray Object

13

• Is a subclass of the maskedArray in NumPy

• Additional features that were needed above the
masked array class:

- Automatic Unit Conversion
- Automatic Dimension Handling
- Automatic Handling of the Positive Attribute

Parallel Python Tools for Handling Big Climate Data air • planet • people

Physarray Object

14

“X = X1 + X2”
Units:

K + Units:
K

“X” = Units:
K

“X = X1 + X2”
Units:

K + Units:
C

“X” =

Units:
K

Convert to K before
operation is performed

“X = X1 * X2”
Units:

kg * Units:
m-2

“X” = Units:
kg m-2

* Must be cf compliant units

Units:
K + Units:

K

Units:
K =

Units:
K = =Units:

kg m-2

Extra features we needed to generate the data correctly:
Automatic Unit Handling

Parallel Python Tools for Handling Big Climate Data air • planet • people

Physarray Object

15

“X = X1 + X2”

+

“X” =

“X = X1 + X2”

Switch the dimensions
before operation is
performed

Dims:
Time
Lat
Lon
Lev

=

Dims:
Time
Lat
Lon
Lev

Dims:
Time
Lat
Lon
Lev

Dims:
Time
Lat
Lon
Lev

+

“X” =

Dims:
Time
Lat
Lon
Lev

=

Dims:
Time
Lat
Lon
Lev

Dims:
Lev
Lat
Lon

Time

Dims:
Time
Lat
Lon
Lev

Extra features we needed to generate the data correctly:
Automatic Dimension Handling

Dims:
Time
Lat
Lon
Lev

“X = X1 + X2”

+=
Dims:
Time
Lat
Lon

Dims:
Time
Lat
Lon

Will give an error

Dims:
Time
Lat
Lon
Lev

Dims:
Time
Lat
Lon
Lev

+

Parallel Python Tools for Handling Big Climate Data air • planet • people

Physarray Object

16

“X = X1 + X2”
Pos:
up + Pos:

up

“X” = Pos:
up

“X = X1 + X2”
Pos:
up + Pos:

down

“X” =

Pos:
up

Convert before
operation is performed

Pos:
up + Pos:

up

Pos:
up = Pos:

up =

Extra features we needed to generate the data correctly:
Automatic Handling of the Positive Attribute

(flipping the vertical dimension)

Parallel Python Tools for Handling Big Climate Data air • planet • people

Switching to Xarray/Dask

17

• We are working on a new version that uses
xarray

• While we no longer need the ability to handle
dimension reordering, we still need functionality
to handle the unit conversion and the flipping of
the vertical dimension

• We will also need to evaluate the performance

Parallel Python Tools for Handling Big Climate Data air • planet • people

Moving Forward ….

18

• We are currently using PyConform in its current
form for our CMIP6 output

• We are looking at a redesign of the internal data
structures to use new capabilities that didn’t
exist when we started the project

• Performance and usability are key for this tool
and we will move in those directions

air • planet • people

Questions

Contact: mickelso .at. ucar.edu
https://github.com/NCAR/PyConform

Big Data

http://m.sweetclipart.com/halloween-pumpkin-pail-with-candy/

