Santander Meteorology Group A multidisciplinary approach for weather & climate

The WRF4G Python Framework for regional climate simulations with WRF model

Antonio. S. Cofiño*

antonio.cofino@unican.es @cofinoa

Santander Meteorology Group

Department of Applied Mathematics and Computational Sciences

Universidad de Cantabria, Santander, Spain

*Developers: C. Blanco, E. Cimadevilla, J. Fernández, V. Fernández-Quiruelas, L. Fita, M. García-Díez, A. Minondo

Aknowledgments: This work is partially funded by the Spanish R+D program through MINECO project INSIGNIA (CGL2016-79210-R) and ERDF

Workshop on developing Python Frameworks for ESS. 30 – 31 October 2018. ECMWF. Reading (UK)

ultidisciplinary approach to weather & climate

WRF4G Python Framework

WRF4G is a software framework developed in Python (75%) by the Santander Meteorology Group, which provides:

- Flexible WRF experiment management, execution and monitoring, and ...
- ... run these experiments on hybrid distributed computing infrastructures (HDCI) concurrently in a coherent way.

Crédit : Laurent Fairhead (LMD/CNRS)

Meteorology Group

A multidisciplinary approach for weather & climate

Reanalysis/Reforecasts/Hindcast

- High number ($\sim 10^4$) of independent simulations
- High volume of output-data (>TB)
- Requires scalability

Regional climate simulation

- Long, continuous simulations; weeks of walltime
- High volume of output data (>TB)
- Recovering system for simulation restart

Weather Forecasting

• QoS and optimal resources: deadline for delivery

Sensitivity/ensemble studies

- Physical schemes, initial conditions and boundary conditions: uncertainty sampling
- Resource demanding experiments composed of many independent simulations

WRF experimental setups

Meteorology Group

A multidisciplinary approach for weather & climate

Reanalysis/Reforecasts/Hindcast

- SEAWIND project
- 21 years of daily reforecasts (36h each)
- 7,665 independent simulations

Regional climate simulation

- ESCENA & CORDEX projects: EUR, AFR and SAM
- 50 years (continuous run, 28-day restarts)
- 650 dependent simulations

Sensitivity/ensemble studies

- CORWES project
- Physics sensitivity study for CORDEX-Africa
- 8-member ensemble of 5-year continuous simulations
- 8 independent groups of 65 dependent simulations

Examples: SantanderMetGroup

ultidisciplinary approach to weather & climate

Benchmark

SEAWIND experiment set: past reforecasts of an improved wind field over Europe for off-shore wind farms.

- Characteristics of each experiment
 - 21 years of daily reforecasts (36h each)
 - 7,665 independent simulations
- Computation cost of each experiment
 - Working Node Architecture
 - CPU: Dual 8 Cores CPU
 - RAM Memory: 16 GB
 - Result
 - WALLTIME (MPI job) = 21 x 365 x 70' ~ **2 years**
 - Output = 21 x 365 x 17 GB ~ **130 TB**

HDCI scenarios

ultidisciplinary approach to weather & climate

Meteorology Group

A multidisciplinary approach for weather & climate

Desktop/Laptop (UI)

- Limited computational power and storage
- User interface to other computer resources

Workstation

- Multi-core, shared memory, moderate storage
- Typically ssh access

Local group/institutional cluster

- Multi-node, distributed memory, large storage
- ssh access, **batch system** (PBS, SGE, ...) to submit jobs

Mainframe/HPC site

- Different architectures and memory configurations
- ssh or kerberos and token based security

Cloud/Grid infrastructures

- Geographically and temporal distributed and on-demand scalability.
- Huge amount of potential computational power and storage, which is not trivial to take advantage of it for weather & climate applications
- Distributed and federated authentication and authorization infrastructures

Meteorology Group

A multidisciplinary approach for weather & climate

Statement of the problem

CARLOS

Meteorology Group

A multidisciplinary approach for weather & climate

http://www.meteo.unican.es

Statement of the problem

Workstation Oceano

Supercomputer Altamira

Meteorology Group A multidisciplinary approach for weather & climate

Statement of the problem

Workstation Oceano

Supercomputer Altamira RES Infrastructure

http://www.meteo.unican.es

ultidisciplinary approach to weather & climate

Meteorology Group

A multidisciplinary approach for weather & climate

Meteorology Group

A multidisciplinary approach for weather & climate

ultidisciplinary approach to weather & climate

Meteorology Group

A multidisciplinary approach for weather & climate

http://www.meteo.unican.es

Meteorology Group

A multidisciplinary approach for weather & climate

ultidisciplinary approach to weather & climate

Requirements

Uniform access to available resources

ultidisciplinary approach to weather & climate

- Simple interface
- Robust and scalable
- Keep track of jobs
- Easy configuration
- Easy deployment and *batteries included*

Meteorology Group

A multidisciplinary approach for weather & climate

WRF4G 2.0 Key features

- Written in **python**. Some bash scripts
- Meta-scheduler (DRM4G & GridWay)
- Advanced CLI with subcommands and python API: \$ wrf4g exp test submit
- Dynamic management of Hybrid-DCIs (Grid, HPC,...)
- **Scalable** (~100,000 jobs)
- Ready-to-run (Linux). WRF binaries included. Some tools like nco, cdo OpenMPI stack.
- Simplification of **configuration files**. Easy experiment definition
- ORM abstraction layer for experiment's metadata management
- Workflow execution (other climate models such as CAM)
- Identity management (private/public keys and X509 tokens)

ultidisciplinary approach to weather & climate

WRF4G Data Model

WRF4G splits a regular WRF simulation **experiment** into:

- realizations
 - A realization is a **independent WRF simulation**
- chunks
 - For convenience, a WRF realization are split into chunks. By definition, a chunk is a dependent partial simulation and requires the previous chunk to start.
 - Chunks depend on computing resource limitations: WALLTIME, RESOURCE DISK QUOTA, ...
 - Chunks allow to **customize** the size of the input files (boundary and initial conditions).

Me

ultidisciplinary approach to weather & climate

Meteorology Group

A multidisciplinary approach for weather & climate

WRF4G Benefits

WRF4G helps to manage, execute and monitor of complex experiments using WRF simulations in HDCI providing a coherent access to computing and storage resources.

- It allows efficient use of HDCI resources without increasing complexity to the researchers.
- Its ability to add resources on-demand makes it ideal for solving work peaks or SLA with Cloud resources
- The meta-scheduling training and proper management of replicas are key to optimize the use of resources

Future Generation Computer Systems 51 (2015) 36-44

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Large-scale climate simulations harnessing clusters, grid and cloud infrastructures

FGCS

V. Fernández-Quiruelas*, C. Blanco, A.S. Cofiño, J. Fernández

Grupo de Meteorología, Dpto. Matemática Aplicada y CC. Computación, Universidad de Cantabria, Santander, Spain

Mete

ultidisciplinary approach to weather & climate

Meteorology Group

A multidisciplinary approach for weather & climate

WRF4G Benefits

WRF4G helps to manage, execute and monitor of complex experiments using WRF simulations in HDCI providing a coherent access to computing and storage resources.

- It allows efficient use of HDCI resources without increasing complexity to the researchers.
- Its ability to add resources on-demand makes it ideal for solving work peaks or SLA with Cloud resources
- The meta-scheduling training and proper management of replicas are key to optimize the use of resources

Mete

ultidisciplinary approach to weather & climate

Meteorology Group

A multidisciplinary approach for weather & climate

WRF4G Benefits

WRF4G helps to manage, execute and monitor of complex experiments using WRF simulations in HDCI providing a coherent access to computing and storage resources.

- It allows efficient use of HDCI resources without increasing complexity to the researchers.
- Its ability to add resources on-demand makes it ideal for solving work peaks or SLA with Cloud resources
- The meta-scheduling training and proper management of replicas are key to optimize the use of resources

Meteorology Group

A multidisciplinary approach for weather & climate

ultidisciplinary approach to weather & climate

Meta-scheduler: DRM4G

- CLI offers users a command to submit, cancel, and monitor WRF simulations and configure resources.
- GridWay core is in charge of job execution and resource brokering.
- **Sched** is responsible for scheduling jobs.
- Middleware Access Driver (MAD)
 - Infrastructure Managers ROCCI, BOTO, APACHE CLOUD,
 - Resource Managers
 FORK, SGE, PBS SLURM, CREAM, GLOBUS, ...
 - Communicators Managers
 LOCAL, SSH, GSISSH, OPENID, ...

ultidisciplinary approach to weather & climate

DRM4G Scalability

Scalability experiment on a laptop (Intel Core i5 at 1.9 Ghz and 8GB of RAM)

10K job experiment:

Meta-scheduler	Job assimilation	CPU	Memory		
GridWay	4 minutes(blocking system)	~13%	~20% (400 MB)		
DRM4G	75 seconds	~5%	~5% (100 MB)		

100K job experiment:

Memory and CPU usage by DRM4G.

Time (in minutes)

Meteorology Group

A multidisciplinary approach for weather & climate

Download & deploy

\$ wget https://meteo.unican.es/work/WRF4G/install.sh
\$ bash ./install.sh

WRF4G installation script

--> Downloading wrf4g_x86_64_versions from ...

This script will install WRF4G version: 2.2.1

--> Downloading wrf4g-2.2.1-x86_64.tar.gz from ... --> Unpacking wrf4g-2.2.1-x86_64.tar.gz in directory /home/user ...

Installation of WRF4G 2.2.1 is done!

In order to work with WRF4G you have to enable its environment with the command:

. /home/user/wrf4g/bin/wrf4g_init.sh

Meteorology Group

A multidisciplinary approach for weather & climate

Download & deploy

Installation of WRF4G 2.2.1 is done!

In order to work with WRF4G you have to enable its environment with the command:

. /home/user/wrf4g/bin/wrf4g_init.sh

Meteorology Group

A multidisciplinary approach for weather & climate

Download & deploy

\$ wget https://meteo.unican.es/work/WRF4G/install.sh
\$ bash ./install.sh

WRF4G installation script

--> Downloading wrf4g_x86_64_versions from ...

This script will install WRF4G version: 2.2.1

- --> Downloading wrf4g-2.2.1-x86_64.tar.gz from ...
- --> Unpacking wrf4g-2.2.1-x86_64.tar.gz in directory /home/user ...

Installation of WRF4G 2.2.1 is done!

In order to work with WRF4G you have to enable its environment with the command:

. /home/user/wrf4g/bin/wrf4g_init.sh

Meteorology Group

A multidisciplinary approach for weather & climate

Download & deploy

\$ wget https://meteo.unican.es/work/WRF4G/install.sh
\$ bash ./install.sh

WRF4G installation script

--> Downloading wrf4g_x86_64_versions from ...

This script will install WRF4G version: 2.2.1

--> Downloading wrf4g-2.2.1-x86_64.tar.gz from ... --> Unpacking wrf4g-2.2.1-x86_64.tar.gz in directory /home/user ...

Installation of WRF4G 2.2.1 is done!

In order to work with WRF4G you have to enable its environment with the command:

. /home/user/wrf4g/bin/wrf4g_init.sh

Meteorology Group

A multidisciplinary approach for weather & climate

Starting

\$ source ./wrf4g/bin/wrf4g_init.sh

```
$ wrf4g start
Starting DRM4G ...
OK
Starting WRF4G_DB (MySQL) ...
OK
```

\$ wrf4g status
DRM4G is running
WRF4G_DB is running

\$ wrf4g resource edit

Meteorology Group

A multidisciplinary approach for weather & climate

Resource Configuration I

resources.conf

[altamira]		
communicator	=	ssh
username	=	uc15003
frontend	=	altamira1.ifca.es
private_key	=	~/.ssh/id_rsa
lrms	=	slurm_res
<pre>max_jobs_running</pre>	=	40
<pre>max_jobs_in_queue</pre>	=	50
[maronostrum]		

Meteorology Group A multidisciplinary approach for weather & climate

Resource Configuration II

resources.conf

[egi_esr]
communicator
username
frontend
private_key
grid_cert
lrms
vo

- = ssh
- = carlos
- = ui.macc.unican.es
- = ~/.ssh/id_rsa
 - = ~/cert.p12
 - = cream
 - = esr

Meteorology Group A multidisciplinary approach for weather & climate

Resource Configuration II

resources.conf

[CESNET_Metacl	ou	d]	
enable	=	true	
communicator	=	ssh	
vm_communicato	r=	op_ssh	3
private_key	=	~/.ssh/id_rsa	
username	=	user	
vm_user	=	drm4g_admin	
frontend	=	ui.meteo.unican.es	
lrms	=	rocci	
cloud_provider	=	EGI FedCloud - CESNET-METACLOUD)
myproxy_server	=	<pre>myproxyl.egee.cesnet.cz</pre>	
flavour	=	Medium	
virtual_image	=	Ubuntu-14.04	1000
instances	=	1	a
volume	=	10	
<pre>max_jobs_runni</pre>	ng	= 5	

Meteorology Group

A multidisciplinary approach for weather & climate

Identity configuration

\$ wrf4g identity altamira conf

--> Configuring private and public keys ... Enter passphrase for key '/uc15/uc15003/.ssh/id_rsa': Identity added: /uc15/uc15003/.ssh/id_rsa (/uc15/uc15003/.ssh/id_ Adding 'id_rsa.pub' to 'authorized_keys' on 'altamira1.ifca.es' Lifetime set to 604800 seconds

Meteorology Group

A multidisciplinary approach for weather & climate

Experiment preparation

\$ wrf4g identity altamira conf

--> Configuring private and public keys ... Enter passphrase for key '/uc15/uc15003/.ssh/id_rsa': Identity added: /uc15/uc15003/.ssh/id_rsa (/uc15/uc15003/.ssh/id_ Adding 'id_rsa.pub' to 'authorized_keys' on 'altamira1.ifca.es' Lifetime set to 604800 seconds

\$ wrf4g exp test start --template-exp=single

- \$ ls test
 experiment.wrf4g wrf4g_files
- \$ wrf4g exp test edit

Meteorology Group A multidisciplinary approach for weather & climate

Experiment configuration I

experiment.wrf4g [DEFAULT] # Experiment configuration experiment_name = test # Simulation domain max dom # Experiment time-specification start date = 2011-08-28 12:00:00 end date $= 2011-08-30 \ 00:00:00$ = standard calendar chunk size h = 12 # Namelist namelist version = 3.3.1 *# Running options* = 1 np requirements = ARCH = "x86 64"

Meteorology Group A multidisciplinary approach for weather & climate

Experiment configuration II

/experiment.wrf4g

[resource:altamira]

```
=/uc15/uc15003 #auxiliar variable
AL HOME
# Input data
domain path = %(AL_HOME)s/domains/Santander_50km
extdata_vtable = GFS
extdata path = %(AL HOME)s/input/NCEP/GFS
extdata interval
                     = 21600
extdata preprocessor = default
# Output
output path = %(AL HOME)s/output
postprocessor = SFC
# apps
app_bundles = netcdf
                     | %(AL HOME)s/netcdf/netcdf-4.1.1.tar.gz
                       %(AL HOME)s/nco/nco-4.0.9.tar.gz
              nco
                       %(AL HOME)s/cdo/cdo-1.3.0.tar.gz
              cdo
                       %(AL_HOME)s/WRF/WRFbin-3.3.1.tar.gz
              wrf
                       %(AL HOME)s/openmpi/openmpi-1.4.tar.gz
              mpi
```


Experiment preparation and submission

Meteorology Group

A multidisciplinary approach for weather & climate

\$ wrf4g exp test create

Preparing namelist...

- ---> Single params run
- ---> Continuous run
 - ---> cycle_chunks: test 2011-08-28_12:00:00 2011-08-30_00:00:00
 - ---> chunks 1: test 2011-08-28_12:00:00 2011-08-29_00:00:00
 - ---> chunks 2: test 2011-08-29 00:00:00 2011-08-29 12:00:00
 - ---> chunks 3: test 2011-08-29 12:00:00 2011-08-30 00:00:00

\$ wrf4g exp test submit

---> Submitting realization: test

- ---> Submitting chunk 1: 2011-08-28 12:00:00 2011-08-29_00:00:00
- ---> Submitting chunk 2: 2011-08-29 00:00:00 2011-08-29 12:00:00
- ---> Submitting chunk 3: 2011-08-29 12:00:00 2011-08-30 00:00:00

Meteorology Group

A multidisciplinary approach for weather & climate

Monitoring

<pre>\$ wrf4g exp test status</pre>							
Realization	Stat	Chunks	Host	Run.Sta	JID	ext	0,0
test	W	1/3	altamira	Waiting	0	-	0.00
<pre>\$ wrf4g exp test status</pre>							
Realization	Stat	Chunks	Host	Run.Sta	JID	ext	0/0
test	R	1/3	altamira	Running	0	-	0.00
<pre>\$ wrf4g exp test status</pre>							
Realization	Stat	Chunks	Host	Run.Sta	JID	ext	0/0
test	S	3/3	altamira	Submitted	1	-	33.33
\$ wrf4g exp test status							
Realization				Run.Sta	JID	ext	0/0
test	R	3/3	altamira	Running	2	-	66.67
<pre>\$ wrf4g exp test status</pre>							
Realization				Run.Sta	JID	ext	0/0
test			altamira		2	0	100.00

ultidisciplinary approach to weather & climate

Projects

INSIGNIA: Contribution to CORDEX Flagship Pilot Studies: regional climate downscaling and data publishing

CORDEX4CDS: Facilitate access to and manipulation of output of regional climate projections over Europe and boundary conditions from GCM simulations needed for future regional projections.

WRF4G: Adaptation of WRF Model to Grid Infrastructures and user-case for wind hindcast over Europe

The SCI-BUS project aims to ease the life of e-Scientists by creating a new science gateway customisation methodology based on the generic-purpose gUSE/WS-PGRADE portal family (WRF4SG)

Coordinated regional climate downscaling experiment using WRF: a contribution to the CORDEX initiative by the Spanish WRF community

CORDEX - Coordinated Regional Climate Downscaling Experiment: a WCRP-sponsored program to produce regional climate change scenarios globally

ultidisciplinary approach to weather & climate

Publications

- M. Menendez, M. Garcia-Diez, L. Fita, J. Fernandez, F.J. Mendez and J.M. Gutierrez, "High-resolution sea wind hindcasts over the Mediterranean area", Clim. Dyn, vol. 42, n. 7-8, pp. 1857–1872, Apr. 2013.
- M. García-Díez, J. Fernández, L. Fita, and C. Yagüe, "Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe," Q.J.R. Meteorol. Soc., vol. 139, no. 671, pp. 501–514, Jan. 2013.
- G. Nikulin, C. Jones, F. Giorgi, G. Asrar, M. Büchner, R. Cerezo-Mota, O. B. Christensen, M. Déqué, J. Fernandez, A. Hänsler, E. van Meijgaard, P. Samuelsson, M. B. Sylla, and L. Sushama, "Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations," J. Climate, vol. 25, no. 18, pp. 6057–6078, Feb. 2012.
- R. Vautard, A. Gobiet, D. Jacob, M. Belda, A. Colette, M. Déqué, J. Fernández, M. García-Díez, K. Goergen, I. Güttler, T. Halenka, T. Karacostas, E. Katragkou, K. Keuler, S. Kotlarski, S. Mayer, E. van Meijgaard, G. Nikulin, M. Patarčić, J. Scinocca, S. Sobolowski, M. Suklitsch, C. Teichmann, K. Warrach-Sagi, V. Wulfmeyer, and P. Yiou, "The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project," Clim Dyn, vol. 41, no. 9–10, pp. 2555–2575, Apr. 2013.

• The WRF user community usually:

ultidisciplinary approach to weather & climate

- designs experiments where many or huge (!!) simulations are required
- has access to hybrid distributed computer infrastructures for running simulations
- WRF4G focus on simplify the design, execution and monitoring of WRF on several computing resources as an coherent meta-computer.
- WRF4G is available under EUPL-1.1

Meteorology Group A multidisciplinary approach for weather & climate

Thank you!Contact: antonio.cofino@unican.es
@cofinoaMore info: "wrf4g" → I'm Feeling LuckyWiki: https://meteo.unican.es/trac/wiki/WRF4G2.0Code: https://github.com/SantanderMetGroup/WRF4G

Job position: 2 years contract for a Python engineer in ESS software frameworks. Let me know if you're interested!!