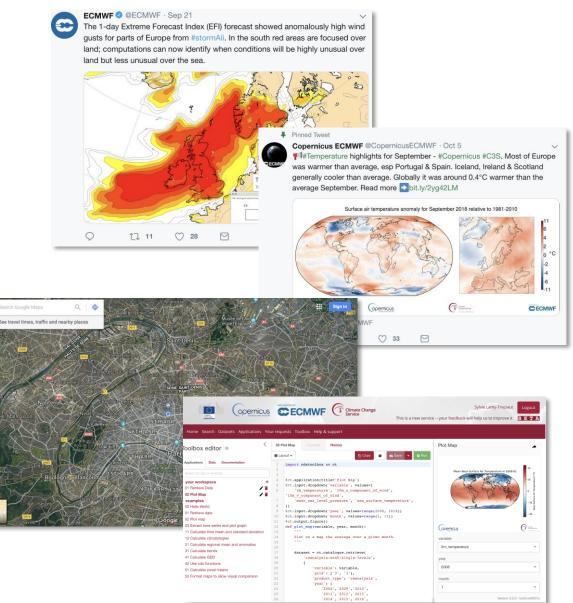

Jupyter... WMS ... All we need is an easy way of visualising meteorological data ...

Milana Vuckovic - Sylvie Lamy-Thépaut -

Pierre Vernier – Carlos Valiente – Cihan Sahin



© ECMWF October 17, 2018

Motivation

Users want:

- An easy way to inspect meteorological data
- An easy way to share results of their work
- Interactive work with data
- Unified presentation of data

How can we help?

Magics Meteorological formats Grib/NetCDF Easy visualisation settings

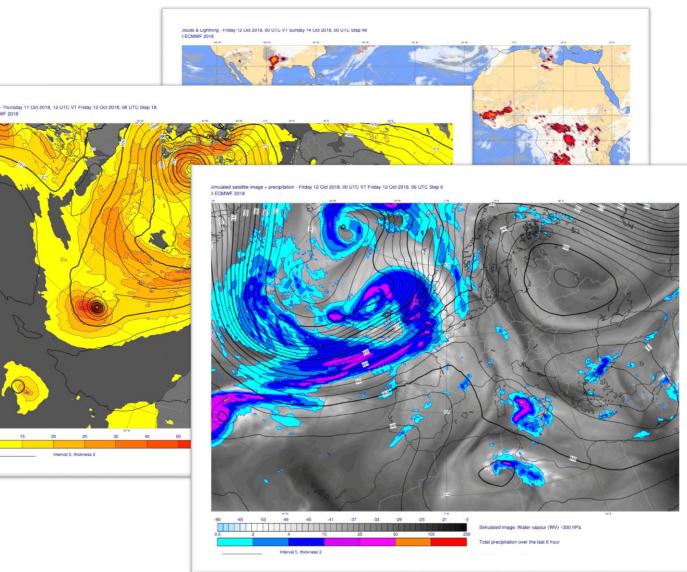
> Eccodes Easy handling of Grib Data

Metview Computation High level concept

ecCharts The web stack More than 250 parameters A WMS services Automatic visualisation

Better handling of NetCDF

Jupyter Notebooks


Skinny WMS

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Automatic visualisation : where to start ? ecCharts !

- EcCharts products are used among many member states and their styles are recognizable for users
- There are already styles for over 250 meteorological parameters
- For most parameters there is more than one style
- Making reproducing ecCharts plots almost trivial

Teaching Magics to recognise data

Ŀ

Inspecting grib keys

#============= MESSAGE 2 (length=20/6588 _____ GRIB { editionNumber = 1; table2Version = 128; # European Centre for Medium-Range Weather Forecasts (common/c-1.table) centre = 98; generatingProcessIdentifier = 145; # Temperature (K) (grib1/2.98.128.table) indicatorOfParameter = 130; # Isobaric level pressure in hectoPascals (hPa) (grib1/local/ecmf/3.table , grib1/3.table) indicatorOfTypeOfLevel = 100; level = 250# Forecast product valid at reference time + P1 (P1>0) (grib1/local/ecmf/5.table, grib1/5.table) timeRangeIndicator = 0; # Unknown code table entry (grib1/0.ecmf.table) subCentre = 0; paramId = 130; #-READ ONLY- cfNameECMF = air_temperature; #-READ ONLY- cfName = air temperature; #-READ ONLY- cfVarNameECME = t: #-READ ONLY- cfVarName = t; #-READ ONLY- units = K; #-READ ONLY- nameECMF = Temperature; #-READ ONLY- name = Temperature; decimalScaleFactor = 0; dataDate = 20100202; dataTime = 0; # Hour (stepUnits.table) stepUnits = 1: stepRange = 0 startStep = 0; endStep = 0: #-READ ONLY- marsParam = 130.128; # MARS labelling or ensemble forecast data (grib1/localDefinitionNumber.98.table) localDefinitionNumber = 1; # ERA5 (mars/class.table) marsClass = 23; # Analysis (mars/type.table) marsType = 2; # Atmospheric model (mars/stream.table) marsStream = 1025; experimentVersionNumber = 0001; perturbationNumber = 0; numberOfForecastsInEnsemble = 0; shortName = t; GDSPresent = 1: bitmapPresent = 0; numberOfVerticalCoordinateValues = 0; Ni = 1440; Ni = 721;latitudeOfFirstGridPointInDegrees = 90;

-> Creating rules:

"match" : { "prefered units" : "C". "set" : ["levelist" : ["250"], "paramId" : "130", "shortName" : "t". "levtype" : "pl' }, "style" : "sh all fM64t52i4", "styles" : ["sh all fM64t52i4". "ct red i2 dash", "sh_gry_fM72t56lst", "sh all fM80t56i4 v2", "sh all fM50t58i2". "ct red i4 t3"

-> Applying Magics definition

"sh_all_fM64t52i4" : {
 "contour" : "off",
 "contour_hilo" : "off",
 "contour_interval" : 4,
 "contour_label" : "off",
 "contour_level_selection_type" : "interval",
 "contour_line_thickness" : 3,
 "contour_shade" : "on",
 "contour_shade_colour_list" :
 "rgb(0,0,0.1)/rgb(0.1,0,0.2)/.../red/magenta",
 "contour_shade_colour_method" : "list",
 "contour_shade_max_level" : 52,
 "contour_shade_method" : "area_fill",
 "contour_shade_min_level" : -72
 },

Teaching Magics to recognise data

NetCDF

netcdf pl { dimensions: longitude = 360 latitude = 181 ; level = 3; time = 4 ; variables: float longitude(longitude) ; longitude:units = "degrees_east" ; longitude:long_name = "longitude" float latitude(latitude) ; latitude:units = "degrees_north" ; latitude:long_name = "latitude" ; int level(level) ; level:units = "millibars" ; level:long_name = "pressure_level" ; int time(time) ; time:units = "hours since 1900-01-01 00:00:0.0" ; time:long name = "time" ; time:calendar = "gregorian" ; short t(time, level, latitude, longitude) t:scale_factor = 0.00149840526246974 ; t:add_offset = 262.173239139654 ; t:_FillValue = -32767s ; t:missing_value = -32767s ; t:units = "K" ; t:long_name = "Temperature" ; t:standard_name = "air_temperature" ; short r(time, level, latitude, longitude) ; r:scale_factor = 0.00251813640893975 ; r:add_offset = 67.851697226809 ; r:_FillValue = -32767s ; r:missing_value = -32767s ; r:units = "%" ; r:long_name = "Relative humidity" r:standard_name = "relative_humidity" ; // global attributes: :Conventions = "CF-1.6" ;

:history = "2018-07-02 14:23:28 GMT by grib_to_netcdf-2.7.3: grib_to_netcdf pl.grib -o

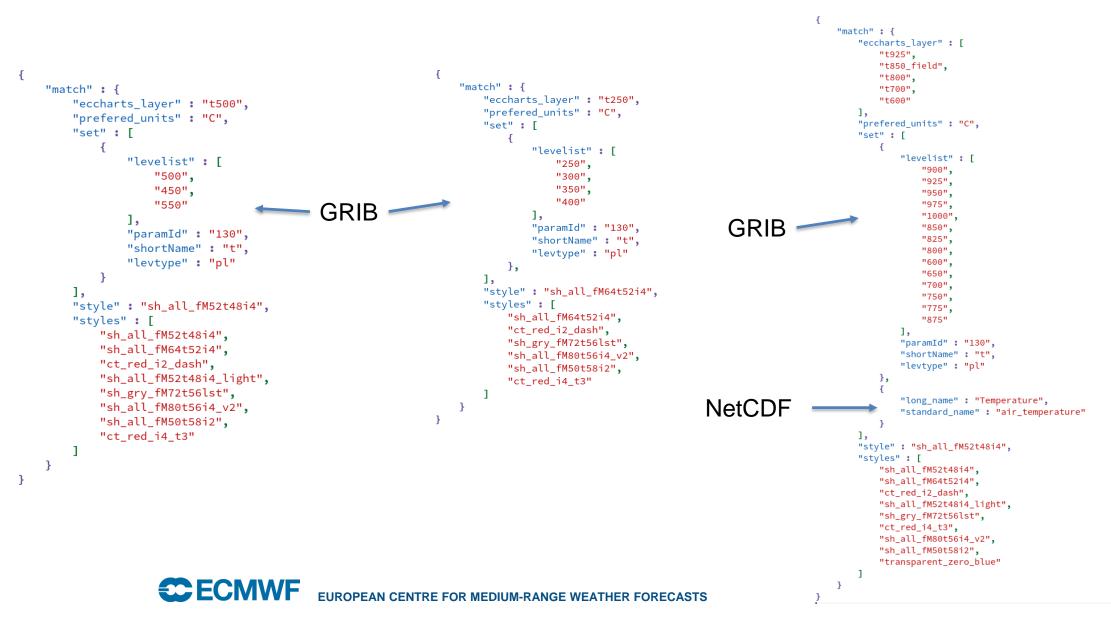
"match" : { "eccharts layer" : "t250", "prefered_units" : "C", "set" : ["levelist" : ["250"], "paramld" : "130", "shortName" : "t". "levtype" : "pl" ĵ, "level" : [250]], "long_name" : "Temperature", "standard_name" : "air_temperature" "style" : "sh_all_fM64t52i4", "styles" : ["sh_all_fM64t52i4",

pl.nc" ;

Units and Scaling

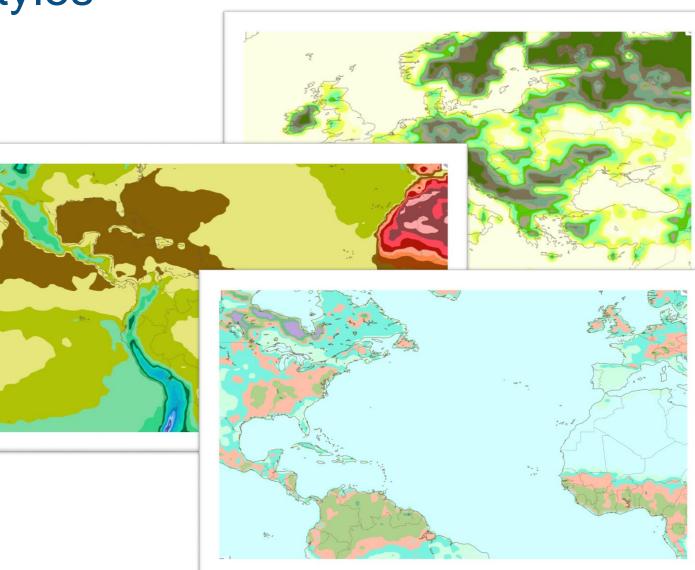
Why?

- Some styles in ecCharts require specific units (mm for precipitation, °C for temperature, hPa for MSLP)
- Some units are just more common than the original units in file


What we did?

 Implemented new built in scaling in Magics, that works when units in file are different than preferred units in definition for style for parameter

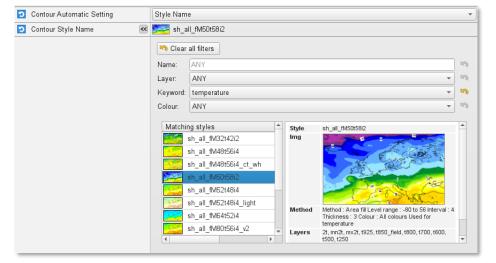
But....


- Units are not always the same in grib and NetCDF

Temperature on different pressure levels example

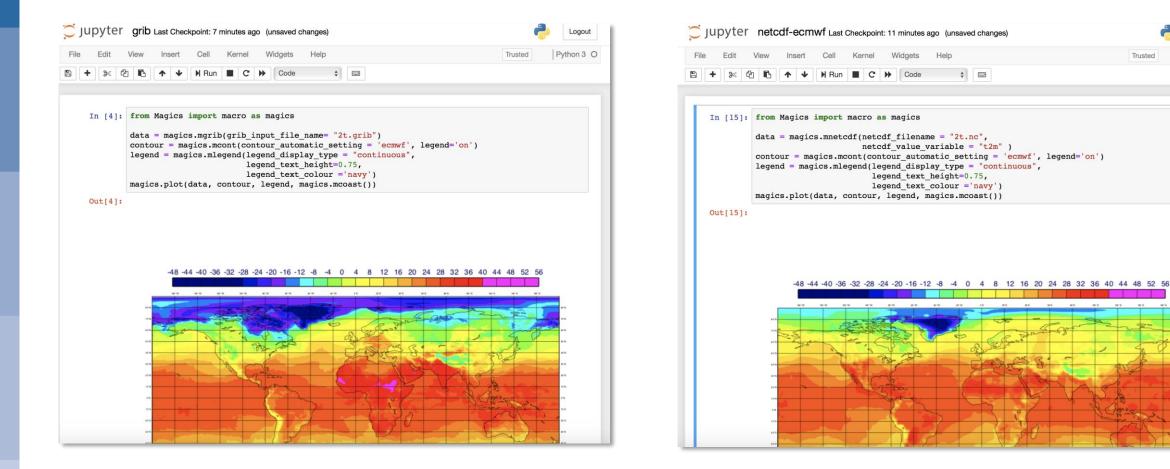
A solid framework for styles

- There are many meteorological parameters not present in ecCharts
- We started designing styles for most important ones
- Introduction of predefined palettes



Building on top of the framework \rightarrow Metview

Style selector


🖸 Contour Shade Palette Name 🛛 <		eccharts_green_brown_20	
	🔊 Clear al	filters	
	Name:	ANY	5
	Origin:	ANY	Clear f
	Colour:	ANY	5
	Count:	ANY	
	Parameter:	ANY	5
	Palette	Name	▼ ▲
		ccharts_green_brown2_28 ccharts_green_brown 13	
		ccharts_green_brown_16	
		eccharts_green_brown_20	
		eccharts_green_brown_29 eccharts_green_grey_10	_
		eccharts_green_grey_10 eccharts_green_magenta_6	_
		eccharts green magenta transparent25 6	
		eccharts_green_magenta_transparent50_6	
		eccharts_green_magenta_transparent75_6	-
		occharte aroon maganta transparant 6	-

Palette selector

Better handling of NetCDF

Logout

Python 3 O

Trusted

Better handling of NetCDF

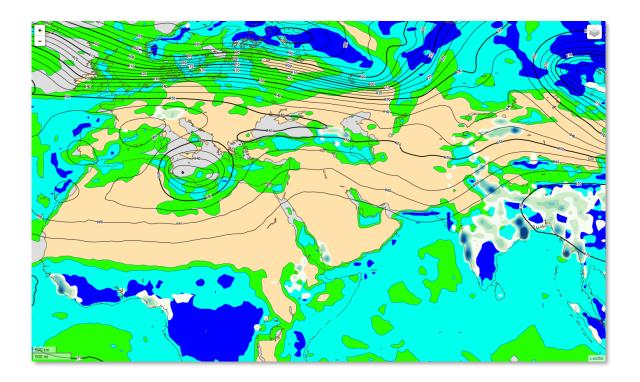
- Automatic guess of the internal representation
- Automatic geo referencement
- Scaling
- Automatic visualisation

	View Insert	Cell Kernel	Widgets Help	Trusted	Python 3
+ % 4	2 в ↑ ↓	NRun 🔳 C	Code 🗘 📼		
In [19]:	import ipyw	import macro vidgets as wid lgets import	dgets		
	def update(Interact		
	project	ion = magics	.mmap(prary_area = "on",		
)		a_name = area		
		n	df(netcdf_filename = "2t.nc", etcdf_value_variable = "t2m")	
			cont(contour_automatic_setting gend(legend_display_type = "c		
	noturn	modiad plot(<pre>legend_text_height=0.75, legend_text_colour = 'navy') projection_data_conteur_le</pre>	mand maging manage())	
			<pre>projection, data, contour, le widgets.Dropdown(options= m</pre>		,
				agics.prederined_areas()))
	area eu	irope	v		
	-4844403	36322824201612-8 -4	4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56		
	-4844403	36322824201612-8 -4	4 0 4 8 121620242832364044485256		
	-4844403	36322824201612-8 -4	4 0 4 8 121620242832364044485256		
	-4844403	363322824201612-8 -4	0 0 4 8 121620242832364004485256		
	-4844403				
	-4844403		0 0 4 8 121620242832364004485256		
	-4844403		0 0 4 8 121620242832364004485256		
	-4844403	5522824201612.8-4			
	-4844403 				
	-4844403				
	-4844403				
	-4844403			CECMWF	

What about xarray ?

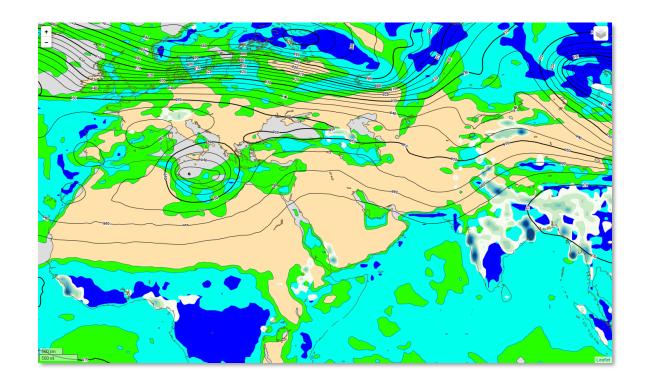
- Xarray has become one of the most popular tools for working with data
- Both GRIB and NetCDF can be loaded as xarray dataset
- The metadata attached could be used to setup an automatic visualization

	iew Insert Cell Kernel Widgets Help	Trusted	Python 3
8 + % 4	▲ ↓ ▶ Code ↓ □		
In [1]:	from Magics import macro as magics import ipywidgets as widgets from ipywidgets import interact		
	import xarray as xr import numpy as np		
	<pre>def update(area): projection = magics.mmap(subpage_map_library_area = "on", subpage_map_area_name = area) data = xr.open_mfdataset('2t.nc') data = magics.xarray(data, xarray_variable_name = "t2m")</pre>		
	<pre>contour = magics.mcont(contour_automatic_setting = 'comwf', legend legend = magics.mlegend(legend_display_type = 'continuous", legend_text_height=0.75, legend_text_colour = 'nawy') return magics.plot(projection, data, contour, legend, magics.mcoas</pre>		
	<pre>interact(update, area = widgets.Dropdown(options= magics.predefined_a</pre>	reas()))	
Out[1]:		WF	
Out[1]: In []:		W	


The next steps -> creating a WMS

- WMS is a popular service
 - The GetCapabilitiies to describe
 - The data: their availability, and available options for visualisation
 - The supported projections.
 - GetMap to get the selected data as graphical product with the selected style/projection
 - GetFeatureInfo to trigger further interactions on a geographical point.
- Many WMS clients out there, so users can keep working with their favorite tool (Open Layers, Leaflet, Qgis, Metview)
 - Most of them offer nice to way to browse the data to display, with all the common zoom and pan.
 - Tiling for performance and cachability

"Skinny" WMS – our way to do it

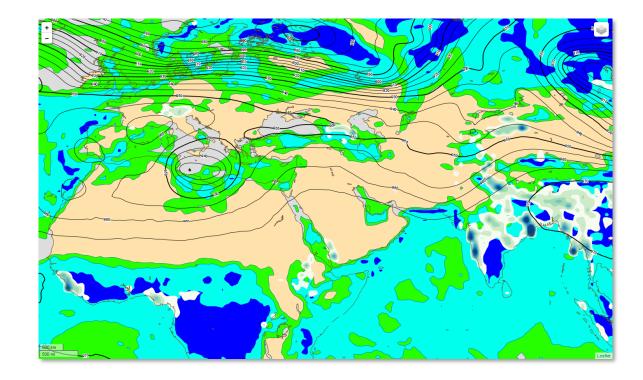

- The idea:
 - scan directory with NetCDF or grib data to collect:
 - Base time, steps and valid time
 - Relevant styles (detected by Magics)
 - → GetCapabilities
 - Call Magics to render the image (format+projection+data+style)

→ GetMap

"Skinny" WMS – our way to do it

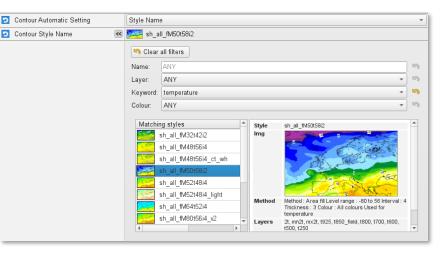
- The implementation :
 - Create a small web service to serve the 2 functions.
 - Package it in a container
 - Publish the container to a Docker registry

• To run:


docker run -v /path/to/data-files:/data ecmwf/wms-server:1.4 /data

"Skinny" WMS - our way to do it

= 127.0.0.1 C 0 Ô Ĺ, • A small demo: [SD-11702].. ERA5 pressu... 127.0.0.1:5000 Failed netcdf-ecmwf Home etcdf o background e/maulus/ell/Australi/ 0 < > 127.0.0.1 C 10fg kx Failed [SD-11702]... ERA5_pressu.. netcdf-ecmwf Home 127.0.0.1:5000 etcdf mx2t 🗸 mwp 🗸 sf foreground grid boundaries 2 wms-server — Python - Python wmslib/wmssvr.py — 98×11 * Serving Flask app "wmssvr" (lazy loading) * Environment: production WARNING: Do not use the development server in a production environment. Use a production WSGI server instead. * Debug mode: on * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit) * Restarting with stat * Debugger is active! Leafle * Debugger PIN: 500-122-818 127.0.0.1 - - [15/Oct/2018 18:30:05] "GET / HTTP/1.1" 200 -StyleLibrary::init() Leaflet 17


"Skinny" WMS – our way to do it

- Next steps:
 - Try more data types
 - Build more experience on GRIB and NetCDF metadata
 - Improve our support for projections.

Conclusions:

- Visualisation has always been important to understand data.
- We plan :
 - To create more rules for automatic styling
 - To keep a consistent approach on the visualisation
 - To improve our support of NetCDF
 - Automatic detection of the internal representation
 - Automatic styling
 - To improve Skinny WMS by using it in various contexts (ECMWF Data Portals, CDS toolbox)
 - To participate to python community and offer easy to use and reliable visualisation.

