
Update on recent developments at ECMWF

Stephan Siemen Development Section, ECMWF

© ECMWF January 08, 2018

BOND project - move to Bologna

- Starting in 2019 ECMWF will build its new computing centre in Bologna, Italy
- With this move the whole data centre will be redesigned
- Impact of software developments
 - Review if services can be moved into the cloud (Office 365, GitHub, ...)
 - Migration time is especially challenges some services will be operated at both sides
 - Removal of old software packages

EEC

Evolution of software

To keep a our focus on performance and keep maintenance sustainable we **need to** evolve our development environment and phase out legacy packages

Packages

- SMS
- Ecflowview
- Grib_api
- Emoslib/BUFRDC
- Emoslib/interpolation
- BUFR_toolbox

- \rightarrow ecFlow
- \rightarrow ecFlowUI
- \rightarrow ecCodes
- \rightarrow ecCodes > 2.0
- \rightarrow MIR
- → Metview/codes_ui

Languages

- C++ 98
- Python 2.7

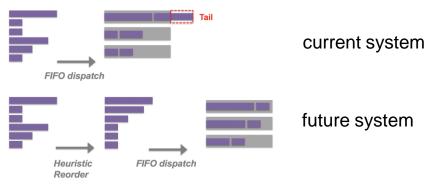
→ C++ 14

 \rightarrow Python 3.6

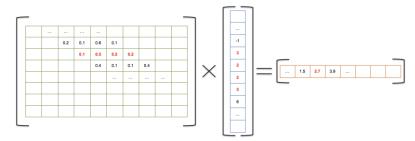
 \rightarrow CMake >3.6

Tools

• CMake >2.8



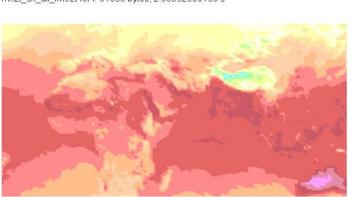
11


Improving the delivery of forecasts products

- Introduction of new product generation system
 - Already in tests with users
 - Move to new system will finish in Q1 2019
 - Makes use of new interpolation
 - New system will result in easier maintenance, will enable us to grow with new challenges & enable more efficient scheduling of tasks
 - Brings MARS archive and dissemination into sync

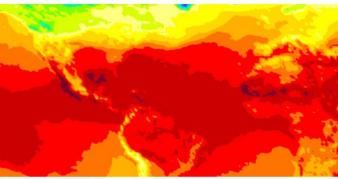
- New web-based requirements user interface in 2019
 - Work progresses well with new interface
 - Better real-time validation and feedback on user's changes

New system will allow better scheduling of tasks

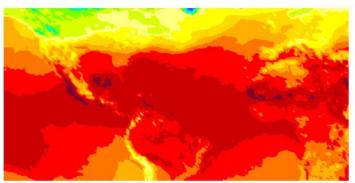

Matrix based approach of new interpolation allows for better scaling on new multi-core architectures

1 -	disseminat	e,		
2	stream	=enfo,		
3	type=p	f,		
4	number	=1 / to / 50,		
5	levtyp	e=sfc,		
6	param=	win,		
7	step=0	10fg	10 metre wind gust since previous post-processing	
8	time=0	10fg3	10 metre wind gust in the last 3 hours	1
9	area=-		10 metre wind gust in the last 6 hours	1
0	arid=0	10fgg15	10 metre Wind gust of at least 15 m/s	1
1		10fgg20	10 metre Wind gust of at least 20 m/s	
2 -		10fgg25	10 metre Wind gust of at least 25 m/s	
.2 *	disseminat	10fgi	10 metre wind gust index	
.3	stream	10si	10 metre wind speed	
4	type=c	10spg10	10 metre Wind speed of at least 10 m/s	
.5		10spg15	10 metre Wind speed of at least 15 m/s	
6 .	disseminat	10u	10 metre U vind component	
7		10ua	10 metre U wind component anomaly	
.8		10ua	10 metre wind speed anomaly	
10		10v	10 metre V vind component	
		10va	10 metre V wind component anomaly	

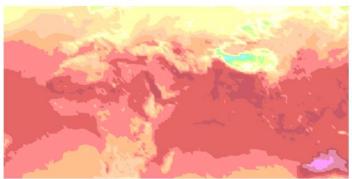
The new web interfaces will feature syntax highlighting and auto completion to help user define their requests

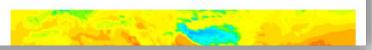

Extensive testing & evaluation has taken place

- New interpolation has different results and therefore needed to be carefully validated
- Much care has been taken to keep technical changes to a minimum for users
- The new system was a chance to review user requirements and adopted them where necessary

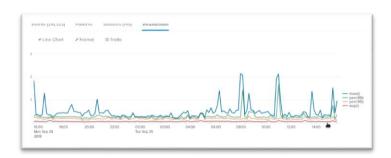


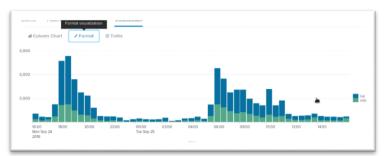
mn2t_sh_all_fM52t48i4_light: 115823 bytes, 3.29667282104 s

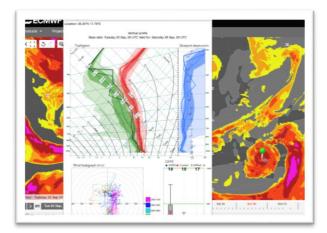

Graphical validation was done through ecCharts, plotting all fields from current (left) and new (right) system.


mn2t_sh_all_fM52t48i4: 91883 bytes, 2.08392000198 s

mn2t_sh_all_fM52t48i4: 91883 bytes, 3.53837704659 s, diff: 0




mn2t_sh_all_fM52t48i4_light: 115823 bytes, 3.79183411598 s, diff: 0



ecCharts – Improving the user experience

Actual status

- 95% of ecCharts layers are generated in less that 3s.
- Each new request is cached to optimise the response time
- New layers and products are requested by users and added regularly

Plan to improve - ecCharts 2.0

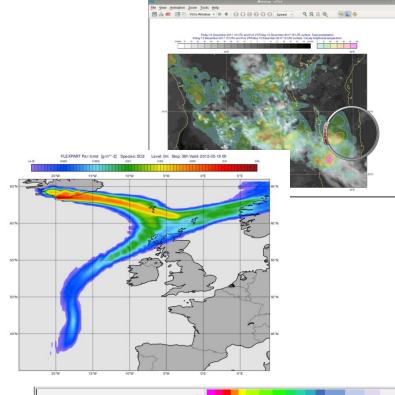
- Improve the user experience by using a 'tile à la google' mechanism (zoom and pan will immediately be more fluid)
- Improve the cache-ability of the requests (the use of tiles will help)
- Improve the 5% of slower requests.
- Improve the deployment procedure to take advantage of cloud technology and new infrastructure.

ecFlowUI is now used in production environment

ecCodes - new developments and migrations

- Important to migrate!
 - GRIB_API only supported until end of 2018!
 - BUFREX no further developments
 - ecCodes will be the only package to support new BUFR developments
 - ecCodes can read many BUFR messages BUFREX can't
 - Has many powerful tools and features which BUFREX did not have
- A word on our performance ...
 - We get many reports on performance on ecCodes
 - We treat them as high priority, but it is not always easy to recreate the cases
 - A low level library can be used in different ways yours might not be the one we use!
 - Please provide us with feedback and examples and be patient with us
 - We are very thankful for Météo France, MeteoSwiss and DWD and many others for their continuing help
 - As high priority we are looking at improving the threading for GRIB en/decoding
 - After this we will review the BUFR decoding performance

codesUI


- We always had tools to interactively explore GRIB and BUFR data in Metview
- Developed new <u>combined</u> tool for GRIB and BUFR: codesUI
- Allows users to easily access the structure and content of BUFR and GRIB data files
- Available in Metview and standalone
- On ecgate and for download

Index E Typ Sut C S. Mu Lv Ssc 2 D Lat 211 3 2 101 ecmf 0 13 1 1 20081208 120000 45.42 213 3 2 101 ecmf 0 13 1 1 20081208 12000 43.33 215 3 2 101 ecmf 0 13 1 1 20081208 12000 30.27 216 3 2 101 ecmf 13 1 1 20081208 12000 32.47 217 3 2 101 ecmf 13 1 1 20081208 12000 32.63 218 3 2 101 ecmf 13 1 1 2081208 12000 32.63 223 3 2 101 ecmf 13 1 1 2081208 12000																				
11 3 2 101 ecmf 0 13 1 1 20081208 12000 43.03 213 3 2 101 ecmf 0 13 1 1 1 20081208 12000 43.03 213 3 2 101 ecmf 0 13 1 1 20081208 12000 43.03 214 3 2 101 ecmf 0 13 1 1 20081208 12000 30.23 216 3 2 101 ecmf 0 13 1 1 1 20081208 12000 32.02 218 3 2 101 ecmf 13 1 1 20081208 12000 32.02 219 3 2 101 ecmf 13 1 1 20081208 12000 32.02 221 3 2 101 ecmf 13 1 1 20081208 12000 32.02 224 3 2 101	15	cations	() Locati	oue 🕘	ebug 🕘	oue 🕘	e (@ L	O Loca	Location	ations		_	_	_	_	_	_		_	
212 3 2 101 ecmf 0 13 1 1 20081208 12000 43.00 214 3 2 101 ecmf 0 13 1 1 20081208 12000 43.00 215 3 2 101 ecmf 0 13 1 1 20081208 12000 43.00 216 3 2 101 ecmf 0 13 1 1 20081208 12000 30.70 217 3 2 101 ecmf 0 13 1 1 20081208 12000 32.63 218 3 2 101 ecmf 13 1 1 20081208 12000 32.63 219 3 2 101 ecmf 13 1 1 20081208 12000 32.32 3 2 101 ecmf 13 1 1 20081208 12000 32.71 32 101 ecmf 13 1 1 20081208			-	0	0	0	-	-												
213 3 2 101 ecm1 0 13 1 1 20081208 12000 43.7 214 3 2 101 ecm1 0 13 1 1 20081208 12000 40.7 215 3 2 101 ecm1 0 13 1 1 20081208 12000 30.7 216 3 2 101 ecm1 0 13 1 1 20081208 12000 30.7 217 3 2 101 ecm1 0 13 1 1 20081208 12000 32.6 218 3 2 101 ecm1 13 1 1 20081208 12000 32.2 1 1 48.030 33.2200 23.2 1 1 48.030 33.2200 23.2 1 1 48.030 33.2200 23.2 1 1 48.030 33.2200 23.2 1 1 47.970 16.8800 22.2 1 1 47.9700 16.8800 22.2 </td <td>Longitude</td> <td>Lo</td> <td>titude</td> <td>Latitu</td> <td>Latitu</td> <td>Latitur</td> <td>Latitude</td> <td>atitude</td> <td>ude</td> <td>10</td> <td>Longitu</td> <td>itude</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td>	Longitude	Lo	titude	Latitu	Latitu	Latitur	Latitude	atitude	ude	10	Longitu	itude	_	_	_	_	_	_	_	_
214 3 2 101 ecm1 0 13 1 1 2081208 12000 40.7 215 3 2 101 ecm1 0 13 1 1 1 2081208 12000 37.4 216 3 2 101 ecm1 0 13 1 1 1 2081208 12000 36.5 217 3 2 101 ecm1 0 13 1 1 1 2081208 12000 32.65 218 3 2 101 ecmf 0 13 1 1 1 2081208 12000 32.65 219 3 2 101 ecmf 0 13 1 1 1 2081208 12000 38.570 222 3 2 101 ecmf 0 13 1 1 2081208 12000 38.63 213 2 101 ecmf 0 13 1 1 2081208 12000 38.63 224 3 2 101 ecmf 0 13 1 1 2081208 12000 38.64 228 3 2 101 ecmf 0 13 1 1 208																				
215 3 2 101 ecm1 0 13 1 1 2081208 12000 39.72 217 3 2 101 ecm1 0 13 1 1 2081208 12000 32.63 218 3 2 101 ecm1 0 13 1 1 1 2081208 12000 32.63 219 3 2 101 ecm1 0 13 1 1 1 2081208 12000 23.63 220 3 2 101 ecm1 0 13 1 1 1 2081208 12000 23.63 221 3 2 101 ecmf 0 13 1 1 1 2081208 12000 23.63 223 3 2 101 ecmf 0 13 1 1 2081208 12000 35.12 223 3 2 101 ecmf 0 13 1 1 2081208 12000 35.12 224 3 2 101 ecmf 0 13 1 1 2081208 12000 54.12 223 3 2 101 ecmf 0 13 1 1 2																				
216 3 2 101 ecm10 13 1 1 1 20081208 12000 37.4 217 3 2 101 ecm10 13 1 1 1 20081208 12000 32.6 218 3 2 101 ecm10 13 1 1 1 20081208 12000 32.63 219 3 2 101 ecm10 13 1 1 1 20081208 12000 32.63 221 3 2 101 ecm10 13 1 1 1 20081208 120000 36.63 222 3 2 101 ecm10 13 1 1 1 20081208 120000 36.63 225 3 2 101 ecm10 13 1 1 20081208 120000 37.67 228 3 2 101 ecm10 13 1 1 20081208 120000 37.87 213 3 2 101 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																				
217 3 2 101 ecm10 13 1 1 1 20081208 12000 36.05 218 3 2 101 ecm10 13 1 1 1 20081208 12000 26.05 219 3 2 101 ecm10 13 1 1 1 20081208 12000 22.32 220 3 2 101 ecm10 13 1 1 1 20081208 120000 36.03 221 3 2 101 ecm10 13 1 1 1 20081208 120000 36.03 223 3 2 101 ecm10 13 1 1 20081208 120000 36.03 224 3 2 101 ecm10 13 1 1 20081208 120000 37.16 227 3 2 101 ecm10 13 1 1 20081208 120000 57.17 231 3 2 101 ecm10																				
218 3 2 101 ecm10 13 1 1 1 20081208 120000 32.63 219 3 2 101 ecm10 13 1 1 1 20081208 120000 32.63 220 3 2 101 ecm10 13 1 1 1 20081208 120000 37.67 221 3 2 101 ecm10 13 1 1 1 20081208 120000 37.67 223 3 2 101 ecm10 13 1 1 1 20081208 120000 37.67 224 3 2 101 ecm10 13 1 1 1 20081208 120000 37.67 228 3 2 101 ecm10 13 1 1 20081208 120000 37.67 228 3 2 101 ecm10 13 1 1 20081208 120000 57.67 229 3 2 101															_	_			_	
219 3 2 101 ecm10 13 1 1 1 20081208 12000 22.3 1 .1 48.0300 33.2200 221 3 2 101 ecm10 13 1 1 1 20081208 120000 27.3 221 3 2 101 ecm10 13 1 1 1 20081208 120000 37.67 222 3 2 101 ecm10 13 1 1 1 20081208 120000 37.67 224 3 2 101 ecm10 13 1 1 1 20081208 120000 37.67 226 3 2 101 ecm10 13 1 1 20081208 120000 37.67 227 3 2 101 ecm10 13 1 1 20081208 120000 51.12 233 3 2 101 ecm10 13 1 1 20081208 120000 47.97 234<			.4000	50.400	50.400	50.400	50.4000	50.4000	000											
221 3 2 101 ecmf 0 13 1 1 1 20081208 120000 37.97 222 3 2 101 ecmf 0 13 1 1 1 20081208 120000 37.97 222 3 2 101 ecmf 0 13 1 1 1 20081208 120000 37.87 224 3 2 101 ecmf 0 13 1 1 1 20081208 120000 32.88 226 3 2 101 ecmf 0 13 1 1 20081208 120000 37.68 227 3 2 101 ecmf 0 13 1 1 20081208 120000 54.75 228 3 2 101 ecmf 0 13 1 1 20081208 120000 48.03 231 3 2 101 ecmf 13 1 1 20081208 120000 47.92 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>																				
222 3 2 101 ecmf 0 13 1 1 1 20081208 120000 36.03 223 3 2 101 ecmf 0 13 1 1 1 20081208 120000 36.03 224 3 2 101 ecmf 0 13 1 1 1 20081208 120000 36.03 225 3 2 101 ecmf 0 13 1 1 1 20081208 120000 33.28 226 3 2 101 ecmf 0 13 1 1 1 20081208 120000 34.68 228 3 2 101 ecmf 0 13 1 1 20081208 120000 54.75 229 3 2 101 ecmf 0 13 1 1 20081208 120000 54.75 231 3 2 101 ecmf 13 1 1 20081208 120000 47.82	92.0800	92.	.8000	49.800	49.800	49.800	49.8000	49.8000	000	93	92.0800	00								
223 3 2 101 ecmf 0 13 1 1 1 20081208 120000 35.12 224 3 2 101 ecmf 0 13 1 1 1 20081208 120000 34.68 225 3 2 101 ecmf 0 13 1 1 1 20081208 120000 37.1 226 3 2 101 ecmf 0 13 1 1 1 20081208 120000 37.1 227 3 2 101 ecmf 0 13 1 1 1 20081208 120000 37.1 228 3 2 101 ecmf 0 13 1 1 1 20081208 120000 52.4 231 3 2 101 ecmf 13 1 1 1 20081208 120000 47.9 233 3 2 101 ecmf 13 1 1 20081208 120000 <td< td=""><td>106.8700</td><td>10</td><td>.9200</td><td>47.920</td><td>47.920</td><td>47.920</td><td>47.9200</td><td>47.9200</td><td>200</td><td>1(</td><td>106.870</td><td>700</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	106.8700	10	.9200	47.920	47.920	47.920	47.9200	47.9200	200	1(106.870	700								
224 3 2 101 ecmf 0 13 1 1 1 20081208 120000 34.68 225 3 2 101 ecmf 0 13 1 1 1 20081208 120000 33.28 226 3 2 101 ecmf 0 13 1 1 1 20081208 120000 33.28 227 3 2 101 ecmf 0 13 1 1 1 20081208 120000 54.75 228 3 2 101 ecmf 0 13 1 1 1 20081208 120000 54.75 229 3 2 101 ecmf 0 13 1 1 20081208 120000 54.75 231 3 2 101 ecmf 0 13 1 1 20081208 120000 44.83 24 3 2 101 ecmf 13 1 1 20081208 120000 -32.77			_	_	_	_			_											
225 3 2 101 ecmf 0 13 1 1 1 20081208 120000 33.28 226 3 2 101 ecmf 0 13 1 1 1 20081208 120000 33.28 227 3 2 101 ecmf 0 13 1 1 1 20081208 120000 37.1 228 3 2 101 ecmf 0 13 1 1 1 20081208 120000 54.75 229 3 2 101 ecmf 0 13 1 1 1 20081208 120000 54.75 231 3 2 101 ecmf 0 13 1 1 20081208 120000 54.75 233 3 2 101 ecmf 0 13 1 1 20081208 120000 47.82 234 3 2 101 ecmf 0 13 1 1 20081208 120000																				
226 3 2 101 ecmf 0 13 1 1 1 20081208 120000 37.1 227 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -0.68 228 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -0.68 229 3 2 101 ecmf 0 13 1 1 1 20081208 120000 51.12 230 3 2 101 ecmf 0 13 1 1 1 20081208 120000 54.12 231 3 2 101 ecmf 0 13 1 1 1 20081208 120000 49.8 232 3 2 101 ecmf 0 13 1 1 20081208 120000 47.92 235 3 2 101 ecmf 13 1 1 20081208 120000																				
227 3 2 101 ecmf 0 13 1 1 20081208 120000 0.68 228 3 2 101 ecmf 0 13 1 1 20081208 120000 54.75 229 3 2 101 ecmf 0 13 1 1 1 20081208 120000 54.75 230 3 2 101 ecmf 0 13 1 1 1 20081208 120000 54.75 230 3 2 101 ecmf 0 13 1 1 1 20081208 120000 54.75 231 3 2 101 ecmf 13 1 1 20081208 120000 48.83 234 3 2 101 ecmf 13 1 1 20081208 120000 -57.75 235 3 2 101 ecmf 13 1 1 20081208 120000 -83.75 237 3 2<	-		-			•					-		-	-	-	_	-			
228 3 2 101 ecmf 0 13 1 1 1 20081208 120000 54.75 229 3 2 101 ecmf 0 13 1 1 1 20081208 120000 51.47 231 3 2 101 ecmf 0 13 1 1 1 20081208 120000 50.47 231 3 2 101 ecmf 0 13 1 1 1 20081208 120000 50.4 232 3 2 101 ecmf 0 13 1 1 1 20081208 120000 48.03 234 3 2 101 ecmf 0 13 1 1 1 20081208 120000 47.92 235 3 2 101 ecmf 0 13 1 1 20081208 120000 47.92 236 3 2 101 ecmf 0 13 1 1 20081208	•		1					>			•					E				
229 3 2 101 ecmf 0 13 1 1 200081208 120000 51.12 230 3 2 101 ecmf 0 13 1 1 20081208 120000 51.12 231 3 2 101 ecmf 0 13 1 1 1 20081208 120000 54.12 232 3 2 101 ecmf 0 13 1 1 1 20081208 120000 48.03 233 3 2 101 ecmf 0 13 1 1 1 20081208 120000 47.92 234 3 2 101 ecmf 0 13 1 1 1 20081208 120000 47.92 236 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -6.77 237 3 2 101 ecmf 0 13 1 1 1 20081208 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-								-			6							
230 3 2 101 ecmf 0 13 1 1 20081208 120000 52.4 231 3 2 101 ecmf 0 13 1 1 1 20081208 120000 50.4 232 3 2 101 ecmf 0 13 1 1 1 20081208 120000 50.4 232 3 2 101 ecmf 0 13 1 1 1 20081208 120000 48.03 234 3 2 101 ecmf 0 13 1 1 1 20081208 120000 49.8 235 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -3.85 236 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -3.85 237 3 2 101 ecmf 0 13 1 1 1 20081208 </td <td></td> <td>*</td> <td></td> <td></td> <td>1265</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8</td>											*			1265						8
231 3 2 101 ecmf 0 13 1 1 1 20081208 120000 50.4 232 3 2 101 ecmf 0 13 1 1 1 20081208 120000 48.03 234 3 2 101 ecmf 0 13 1 1 1 20081208 120000 48.03 234 3 2 101 ecmf 0 13 1 1 1 20081208 120000 47.92 235 3 2 101 ecmf 0 13 1 1 1 20081208 120000 47.92 236 3 2 101 ecmf 0 13 1 1 20081208 120000 -6.77 237 3 2 101 ecmf 0 13 1 1 20081208 120000 -8.27 239 3 2 101 ecmf 13 1 1 20081208 120000 -13.27				6	7	%	P			_			652		an		<mark>د</mark> ا	ر هر		
232 3 2 101 ecmf 0 13 1 1 1 20081208 120000 48.03 233 3 2 101 ecmf 0 13 1 1 1 20081208 120000 48.03 234 3 2 101 ecmf 0 13 1 1 1 20081208 120000 49.8 235 3 2 101 ecmf 0 13 1 1 1 20081208 120000 47.67 236 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -6.77 237 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -6.77 238 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -13.77 241 3 2 101 ecmf 13 1 1 1 200812			-						•				Rod		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				200	
233 3 2 101 ecmf 0 13 1 1 1 20081208 120000 49.8 234 3 2 101 ecmf 0 13 1 1 1 20081208 120000 49.8 235 3 2 101 ecmf 0 13 1 1 1 20081208 120000 47.92 236 3 2 101 ecmf 0 13 1 1 1 20081208 120000 67.57 236 3 2 101 ecmf 0 13 1 1 1 20081208 120000 67.57 238 3 2 101 ecmf 0 13 1 1 1 20081208 120000 67.67 238 3 2 101 ecmf 0 13 1 1 20081208 120000 13.27 240 3 2 101 ecmf 13 1 1 20081208 120000	rk u i				-						75	ξ.		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ $	25	(• •>_	57 .		6 0	•
234 3 2 101 ecmf 0 13 1 1 1 20081208 120000 47.92 235 3 2 101 ecmf 0 13 1 1 1 20081208 120000 67.57 236 3 2 101 ecmf 0 13 1 1 1 20081208 120000 67.57 237 3 2 101 ecmf 0 13 1 1 1 20081208 120000 6.77 238 3 2 101 ecmf 0 13 1 1 1 20081208 120000 9.88 239 3 2 101 ecmf 13 1 1 1 20081208 12000 13.27 240 3 2 101 ecmf 13 1 1 1 20081208 12000 7.67 242 3 2 101 ecmf 13 1 1 1 20081208 12000									•	•				2-2		• •	15	5		-
235 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -67.57 236 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -67.57 236 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -6.77 238 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -6.77 239 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -13.27 240 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -13.27 241 3 2 101 ecmf 0 13 1 1 20081208 120000 -23.5 243 3 2 101 ecmf 0 13 1 1 1 20	RANK A	- 77	_							- 7	<u> </u>	1724		5		-		1	•	• • •
237 3 2 101 ecmf 0 13 1 1 20081208 120000 -6.77 238 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -9.88 239 3 2 101 ecmf 0 13 1 1 20081208 120000 -9.88 240 3 2 101 ecmf 0 13 1 1 1 20081208 12000 -13.27 241 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -7.73 242 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -20.27 243 3 2 101 ecmf 0 13 1 1 20081208 120000 -20.27 43 3 2 101 ecmf 0 13 1 1 20081208 120000 -23.5												-77/	R			•				
237 3 2 101 ecmf 0 13 1 1 20081208 120000 -6.77 238 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -9.88 239 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -9.88 240 3 2 101 ecmf 0 13 1 1 1 20081208 12000 -17.73 241 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -7.73 242 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -20.27 243 3 2 101 ecmf 0 13 1 1 20081208 120000 -20.27 243 3 2 101 ecmf 0 13 1 1 20081208 120000	~									_		<u> </u>	3	_	_	_	- 1	10 To		
239 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -13.27 240 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -17.73 241 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -7.73 242 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -3.67 243 3 2 101 ecmf 0 13 1 1 1 20081208 120002 -7.73 243 3 2 101 ecmf 0 13 1 1 1 20081208 120002 -23.75	~h	<u> </u>										b			_	_				
239 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -13.27 240 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -17.73 241 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -7.73 242 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -7.73 243 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -7.73 243 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -23.5	~			000				6				- J.	7~3-							
241 3 2 101 ecmf 0 13 1 1 20081208 120000 -37.67 242 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -20.27 243 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -23.5						•													×	/
242 3 2 101 ecmf 0 13 1 1 20081208 120000 -20.27 243 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -20.27				r i		F I														4
243 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -23.5				- 1	L -	- *	-													
				-	-	-	-												-	
							•													
244 3 2 101 ecmf 0 13 1 1 1 20081208 120000 2.48		-						25												
245 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -2.43											•									
246 3 2 101 ecmf 0 13 1 1 1 20081208 120000 -3.15 🗸																				
4																	_			
Log																	~	Clear lo	g on ne	w messa
Task: Generating json dump for message: 230																				

Magics 3 & Metview 5

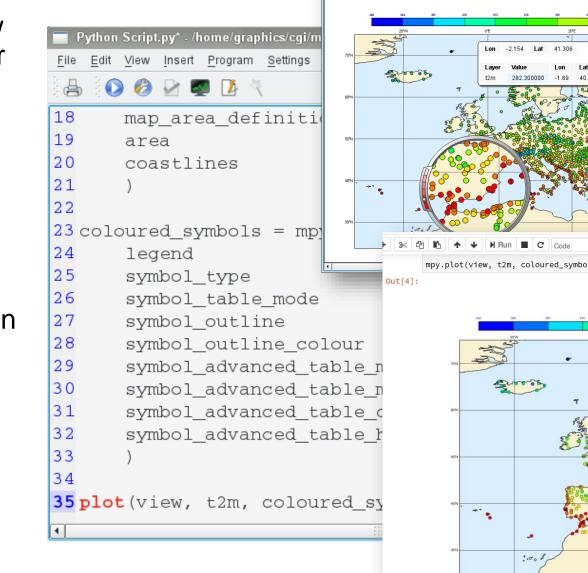
Magics 3.0

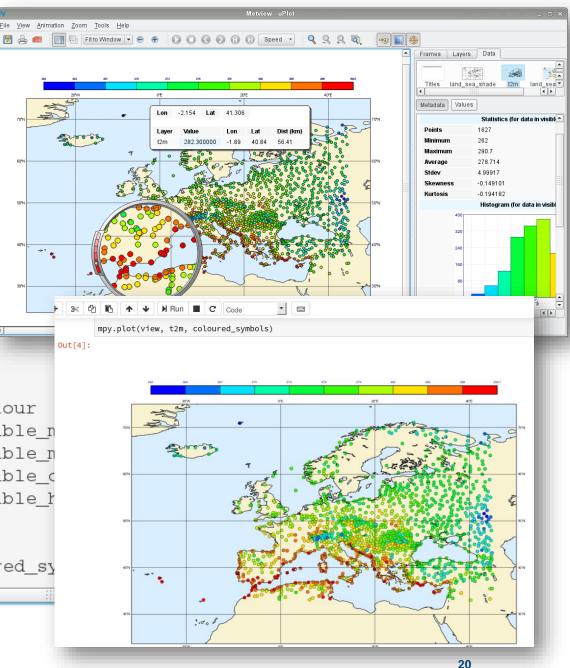
- Mature version of library
- Biggest change new Python interface for version 2 & 3
- Better automatic support for NetCDF
- Metview 5.0
 - Motif interface is removed & support Qt5
 - New features for interactive editing of plots & new colour schemes
 - New interface to Flexpart
 - First version to support new Python interface ...
 - https://software.ecmwf.int/wiki/display/METV/Version+5.0+Updates

Contour Gradients Colour List	»	Î	Ô			Û	
Contour Gradients Waypoint Method	Left					•	
Contour Gradients Technique	Hsl					•	-
Contour Gradients Technique Direction	Anti Cl	lockwise				•	
Contour Gradients Step List	5/3/4/2	2/3				•	
Templates	►						
Reset				<u>о</u> к	<u>C</u> ancel	<u>S</u> ave	

\rightarrow We will increase major version number more frequently than in the past

Building a Python framework to work with ECMWF data


- Important target to fully support Python 3 by the end of 2018
 - Review how we use Python best practices on how to write scripts
 - Make use of all the possibilities the Python3 eco-system offers
 - Offer JupyterLab based environment for users
- We are making progress
 - Metview-Python already based on Python 3.6
 - Magics & webapi offer Python 2 and 3 interface
 - We created a Python 3 interface to load GRIB data into xarray
 - Using ecCodes; but high-level data structure for NetCDF-CF
 - Used by Metview-Python & CDS toolbox


ut[4]:	x = da.concatenate(xs, axis=0) x
ut[4]:	
	<pre>dask.array<concate, 14="" 1440),="" 40)="" 721,="" chunksize="(4," dtype="int16," shape="(1460,"></concate,></pre>
n [5]:	t2m[0].shape # One day
ut[5]:	(4, 721, 1440)
n [6]:	x.shape # All days concatenated together
ut[6]:	(1460, 721, 1440)
	Visualize data with matplotlib
n [7]:	<pre>import numpy as np from matplotlib import pyplot as plt imatplotlib inline with netCDF4.Dataset(filenames[0]) as dset: latitude = dset.variables['latitude'][:] longitude = dset.variables['longitude'][:] plt.figure(figsize=(20, 8))</pre>
	<pre>plt.xtickm(np.arange(len(longitude))[::100], longitude[::100]) plt.ytickg(np.arange(len(latitude))[::100], latitude[::100]) plt.ytiake[("Longitude") plt.ytiake[("Longitude") plt.title("Temperature at Two Meters") plt.imshow(x[0, :, :], cmap="viridis") plt.colorbar()</pre>
ut[7]:	<matplotlib.colorbar.colorbar 0x7f90d1ef0eb8="" at=""></matplotlib.colorbar.colorbar>
	10 Temportura at Tes Main 10
	33.0
	40.0
	ut[5]: n [6]: ut[6]: n [7]:

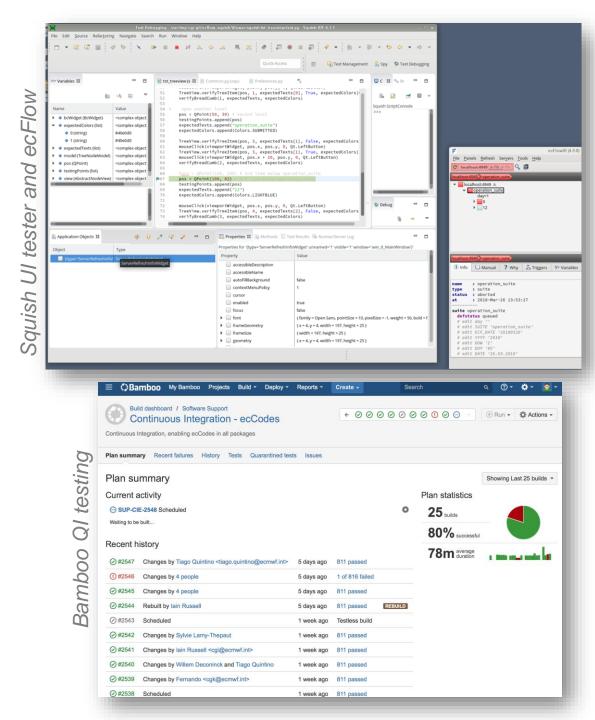
- We want to progress from the first generation Python interfaces we offered
 - Much better integrated with PyData eco-system and easy installable through pip & conda

The Metview Python framework

- Allow users of Metview to use easily the power of Python but still have all functionality of Metview; including visualisation
- Users can continue in their familiar environments or work in the Python Jupyter environments

Importance to engage with community

- There are already many good efforts and solutions out there
 - Python seems to be the language of choice
- ECMWF hosted a two day workshop for developers of Python frameworks for earth sciences
 - Many good "wheels" which do not need to be reinvented
 - Building a community is more then just releasing software under Open Source
 - → 'Open Source' versus 'Open Development'
- Continue outreach
 - 18-19 October 2nd Python frameworks workshop


Software development infrastructure

- ECMWF had a series of consultancies to improve QI/UI testing, software installations and make better use of new language features
- Want to engage more with communities which can provide binary packages of ECMWF software
 - Possibly make public git repos available
- ECMWF embraces Open Development
 - Started ECMWF space on GitHub

ECFCMWF

 Looking at contributing to third-party open source projects, rather than develop own packages

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Learning in focus

eLearning

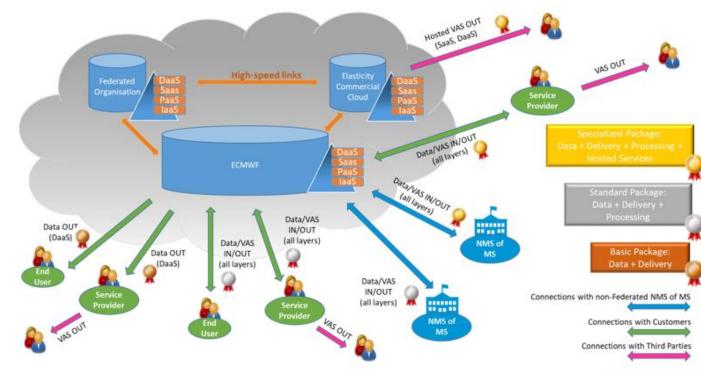
We have completed the following modules:

- Batch system on ECGATE
- ecCodes (GRIB, BUFR)
- ecFlow
- MARS
- Metview

Two more modules in the pipelines:

- Compiling on ECGATE
- ecCodes: advanced GRIB decoding

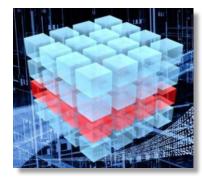
Software and Computing services CODES CODES CODE A collections of online resources dedicated to ECWMF software. applications and computing services ecCodes: decoding with GRIB ecCodes: advance features (TBA) Introduction to BUFR decoding with ecCodes tools 1 hour 1 hour 1 hour MARS - advanced retrievals, data MARS - ECMWF's meteorological A starter guide to ecFlow manipulation and computations archive 1 hour 1 hour 1 hour Introduction to Metview Metview for the single-column Using ECMWF computing facilities: model (SCM) the batch system 1 hour 20 minutes 1 hour


https://www.ecmwf.int/en/learning/education-material/elearning-online-resources

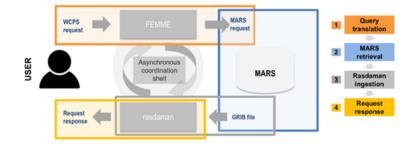
Follow us on #ECLearn

ECMWF – web services & the cloud

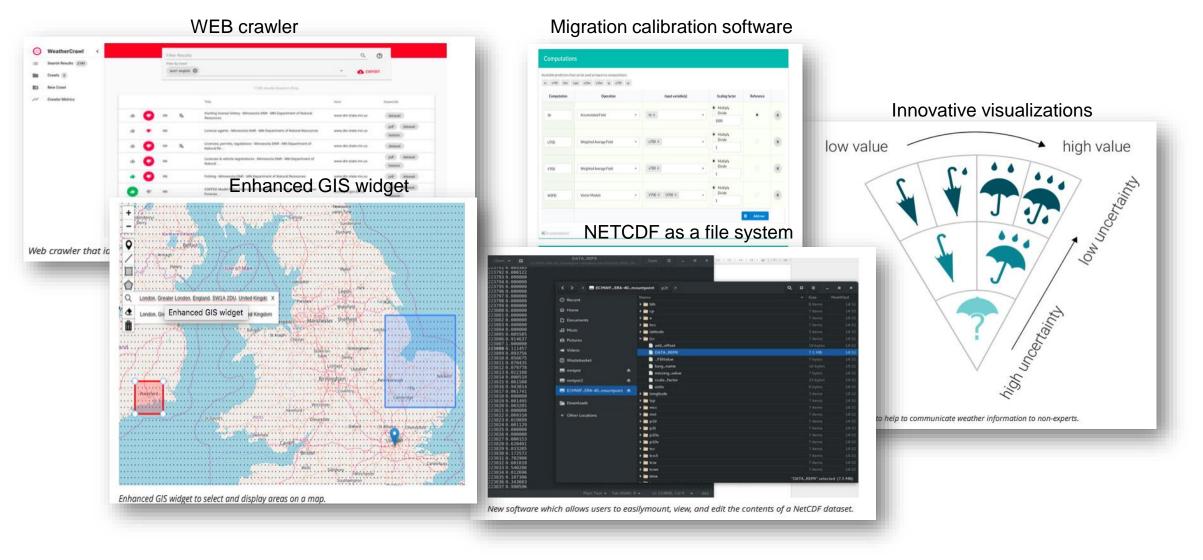
- ECMWF looks together with its partners on providing private clouds
 - European Weather Cloud with EUMETSAT & DIAS WEkEO
- Looking at better opportunities for users to make use of ECMWF forecast data


H2020 EarthServer-2 project

- Came to an end in April after three years
- Explored DataCube technology for fast retrievals of time series
 - We hoped to provide interface for users to build their own applications
- We learned a lot
 - on OGC standards and services and how they could help our users
 - on how we could provide web services to enable uses to build their applications
 - on how to work with commercial third-party software providers
- We built a demonstration WCS/WCPS service
 - Tried to ingest data directly and connect to MARS archive
 - Trialled software did not meet requirements and service is now switched off
 - Lessons learned are integrated in new developments



EarthServer-2 has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 671951



ECMWF Summer of Weather Code (ESoWC)

TC	SUMM Weathe team up with mete develop innovative we	er Code corology experts	ARE	
	FROM JAN 22ND 2018 5 SELECTED EACH RECEIVES	2018		Sowc
Software developers, s scientists, working with innovative weather-rela	ECMWF mentors to o	essionals and screate new and	teams - 5 challen Enhanced GIS Web crawler for Web crawler of co	alibration se
The new developments weather services in its	•	pport national	□ Web cratton of ca □ Migration of ca Python □ Innovative v □ NETCDF a	sualisa. Sa file system

ECMWF Summer of Weather Code (ESoWC)

