
WRF-GO
workflow manager for meteo prediction and applications
Emanuele Danovaro

CIMA Fields of activities

• Hydro-met applications for Civil Protection

• Risk assessment

• Climate Change and DRR: Targeting Extremes

• EO assisted applications

• ICT Tools for research and services

• Liability, Responsibility & Governance in risk

• Capacity building and education from the international to the
local dimension

• Marine Ecosystem Monitoring

Disaster Risk Reduction

Whenever there is a risk, we are asked to complement
operational services:

• High-resolution
downscaling (WRF)

• Model chains (meteo +
hydro or wildfire models)

• Impact estimation
(windstorm, floods, …)

Commercial services

Forecast of energy production
(wind turbines, photovoltaic)

• Following day

• Hourly updates

Insurance (floods, hail)

Our tools

• Multi-model ensemble to target
extreme events

• Model chains (meteo-
hydro/wildfire/energy-impact)

• Web interface to configure
experiments & trigger execution

• myDewetra for situation awareness
and decision support

• Rasor to assess the impact of
extreme events

HPC

HTC

Model chains (from DRIHM project)

Cloud

Sample workload

Meteo downscaling

• fetching boundary conditions + pre-processing (36 cores, 20’)

• 48h WRF at 1.5km at national level (1500-1800 cores, 3 hours)

(180 GB of output files - uncompressed NetCDF)

• UPP post-processing + delivery (3 GB compressed GRIB2)

A smaller case

• 48 WRF at 2km at regional level (200-300 cores, 2 hours)

Hydro models, Impact assessments, … (tens of cores, minutes)

Computing resources

Reserved resources:

• 50 nodes (1800 cores) on CINECA Tier-1 HPC system (WRF 1.5km)

• In-house small cluster ~300 skylake cores (WRFDA 2km)

• AWS reserved VMs for operational services (flood, wildfire)

Resources on demand:

• Grants on SuperMUC & Cineca Tier-0 HPC system

• AWS on-demand clusters (c5 instances)

How to fit ? 1/2

Beside pure computation, there are time consuming tasks:

Fetching boundary condition, preprocessing, post-processing,
data transfer.

Files represent a timeframe: we adopts event-based
programming / streaming programming to reduce latencies

We use a messaging system to notify the workflow manager
and to trigger events.

How to fit ? 2/2

Are reserved resources available ? We use them!

otherwise

Best-effort HPC resources may impose long queues

We submit on multiple resources, if one starts the computation
(within a deadline) we exploit it and free the other resources.

If none succeed in time, the task is executed on a virtual cluster
on AWS

How it works

Model
Configuration

Workflow
Configuration

Submission Handler

Adapter, Airavata
API

EasyGateway
Workflow Manager

Other Workflow
Managers (ecflow ?)

Workflow manager
• The main component – it handles all workflow submission request.

• It exposes a RESTful API for the workflow submission, monitoring
and administration.

• Submission to resources is performed using Resource Specific
Modules (RSM)

Resource Specific Modules
• A RSM performs a single job submission, monitoring and

administration on a specific resource.

• WM - RMS communication protocol is based on protobuf.

• Real-time messages are sent to a Pub-Sub messaging system
(BusQueue)

WM - RSM communication

The WM can:

• Request the submission of a job

• Request the termination of a job

• Publish on the BusQueue change of state of a Workflow

• Consume the BusQueue to detect:
a change in the state of a job
other notifications from the RSM

WM - RSM communication
The RMS must:

• Return OK/FAIL when a new job is submitted (i.e.: missing
parameters)

• Publish on the BusQueue change of state of a Job

• Consume the BusQueue for job termination notification
(i.e. no polling!)

The RMS can:

• Publish on the BusQueue specific events (an output file has been
written)

• Publish on the BusQueue in near real-time log/stdout/stderr

A few technical choices

Workflow Manager & Resource Specific Modules

developed in go – good for concurrency, low memory footprint

BusQueue is NATS, a zero-configuration, fast and lightweight
messaging system

Web portal for workflow configuration & execution
developed in TypeScript + Angular + node.js

Deployed on AWS (t2.micro can manage hundreds workflows/day)

Pros & cons

• Fast & lightweight

• Handles restart/failures

• Easy to extend

• Easy to connect to other
workflow managers

• To battle-test

• Limited credential
management
(ssh public keys)

• No accounting

Future directions

Support data streaming:

• model send output to streaming pipeline

• next model in the workflow receives data from the pipeline

• models are loosely coupled

File-based IO is no longer required
We can have asynchronous IO by sinking to a file the data coming
from the pipeline

Thanks!

Emanuele Danovaro

emanuele.danovaro@cimafoundation.org

