
Optimisation of Data Movement in Complex Workflows

18th Workshop on High Performance Computing in Meteorology

Tim Dykes, Aniello Esposito, Clement Foyer, Utz-Uwe Haus,
Harvey Richardson, Karthee Sivalingam, Adrian Tate

● Challenges observed by us and customers

● The Octopus project

● The MAESTRO and EPIGRAM-HS projects

● Universal Data Junction (UDJ) and data redistribution

● A use-case (WRF visualization)

Agenda

● Software stack remains ill-suited for modern systems (getting worse)
● Why are we still using a programming environment designed in the age of FLOPS?
● Where’s my consistent data interface?

● So-called “next-gen memory hierarchy” never showed up
● Not actually a hierarchy…
● Where is HBM for CPUs?
● How will we use use NVRAM?
● Where’s the working memory model?

● IO interfaces are less than useful
● We hate POSIX but there’s still nothing better

● You’re focusing on a small piece of the pie
● Only a small piece of the scientific workflow has been treated well
● Simulation (e.g. CFD) done well but analysis, post-processing, usage models are

ignored
● Time-to-solution is very important, but not the only game in town

Complaints we hear from (tetchy) customers

• Many forms of parallelism

• Algorithmic advances

• Code optimization (Compiler & hand)

• ISA features

• Programming Models

• Performance Abstraction

• Systems Software / Operational

• Network, memory increases

Time to solution

Time to solution

I/O I/Oparallelparallel

Time to solution

Limiting resource

(# memory channels)

limiting resource

#IO channels

serialserial

Time to scientific product / insight

Forecast
Data

Assimilation
Product

Generation

Time to solution

Time to product

What does mean?

How do we optimise to be smaller?

NWP:

Heavy lifting,

PFS usage

manual work

Time to insight

Time to insight

Heavy lifting,

PFS usage

manual work

Apply Cray

Tuning Magic

here please

distributed distributed distributedglobal global

1. Data-centric view

of workflows

2. Parallel Data Handling

and re-distribution

4. Minimally Invasive API at

multiple levels app, systems

software)

3. Object-like and

transaction

interface to user-data

5. Pragmatic Model of Memory

System

6. Interface to all

memory and storage

7. Resource-aware

adaptive

Transport

8. Minimization of data movement

EPIGRAM-HS: Exascale ProGRAmming Models for

Heterogenous Systems

Maestro: Middleware for memory and data-awareness in

workflows

New EU H2020-FETHPC-2017 Projects

EPIGRAM-HS

EPiGRAM-HS is developing a programming environment,

enabling HPC and emerging applications to run on large-

scale heterogeneous systems at maximum performance

Network Memory Compute

Applications

Traditional HPC Applications

● IFS – Weather Forecast – ECMWF

● Nek5000 – CFD – KTH PDC

● iPIC3D – Space Physics – KTH PDC

Emerging AI Applications

● Lung Cancer Detection – Caffe / TensorFlow –

Fraunhofer

● Malware Detection – Caffe / TensorFlow – Fraunhofer

EPIGRAM-HS Applications

● FETHPC-2017 Consortium
● Industrial partners

● CRAY (Switzerland), Seagate (UK)

● Research organisations / supercomputing centres
● CEA (France), CSCS (Switzerland), ECMWF (international), JSC (Germany)

● SME
● Appentra (Spain)

● Goals
● Develop a middleware providing consistent data semantics to multiple layers

of the stack
● Demonstrate progress for applications through memory- and data-aware

(MADA) orchestration
● Enable and demonstrate next-generation systems software MADA features
● Improve the ease-of-use of complex memory and storage hierarchy

Maestro Project

2018-07-16 11

● A middleware library accessible from multiple levels of the stack

● Access data using an object-like and transactional interface

● Application gives over control of “Core Data Objects” to Maestro

● Maestro moves data wherever it is best placed during this time

● Gives back data to application satisfying requested data qualities

Maestro Capabilities

● Workflow scheduling / tasking is a big topic (so leave

that for collaborations)
● For HPC only this might be unrealistic anyway

● We can implement a way to move data (UDJ)

● We can work with distributed data

● Describe (distributed) data as “objects”

So how did we start on Octopus

Universal Data Junction (UDJ)

Producer (M nodes)

MPIIO

POSIX

MPIIO

POSIX

Consumer (N nodes)

 Distribution (contig, none, cyclic)

 Format (array, HDF5, Conduit, text)

CDO CDO

 Distribution

 Format

Parallel file system

 Transport methods :
 DataSpaces
 MPI (DPM)
 Ceph rados
 DataWarp
 File-based

udj_init()

udj_put() udj_get()

Non-triviality of Producer-Consumer Redistribution

• 2d data set dim r x c in memory

• Distributed according to some distribution scheme D1 = (G, B1)

r

c

0

1

2

3

0

1

2

0 1 2 3 0 1 2

0

1

2

3

3

0 1 2G B1

• Re-distributed according to new distribution scheme D2=(G, B2) on same grid G

• Must communicate the non-trivial intersection data (red) for every process pair

0

1

2

3

3

0 1 2G

r

c

0

1

2

3

0

1

0 1 2 3 0 1B2

𝑃𝑙𝑜𝑐𝑎𝑙 = 𝑝 𝑃𝑙𝑜𝑐𝑎𝑙 = 𝐿𝑃𝑙𝑜𝑐𝑎𝑙 = 1

𝑃𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑅

local

remote

Classical Redistribution

if MAX(loc2glob(loc),loc2glob(rem))<

MIN(loc2glob(loc+b1),loc2glob(rem+b2)) → Add to intersection

Complexity: O(#𝐷𝑖𝑚 ∙ 𝐿 ∙ 𝐶 ∙ 𝑛𝑙𝑜𝑐𝑎𝑙 ∙ 𝑛𝑟𝑒𝑚𝑜𝑡𝑒)

Ignores three types of periodicity!

For each rem in #NumRemoteBlocks

For each d in #Dimensions

On each local rank:

For each p in length(remote_grid(d))

For each loc in #NumLocalBlocks

𝑃𝑟𝑒𝑚𝑜𝑡𝑒 = 1

Intersection = 𝑖1 × 𝑖2 ×⋯× 𝑖𝑑

𝑃𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑐 + 1

ASPEN: Adjacent Shifting of PEriodic Node data

𝑃𝑟𝑒𝑚𝑜𝑡𝑒 = c 𝑃𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑅

Complexity: O(#𝐷𝑖𝑚 ∙ 𝐿 ∙ ො𝑛𝑙𝑜𝑐𝑎𝑙 ∙ ൗ𝑏𝑙𝑜𝑐𝑎𝑙
𝑏𝑟𝑒𝑚𝑜𝑡𝑒

)

if (loc2glob(loc) % s2) <= b2 → Add to intersection

For each sub in Τ𝑏𝑙𝑜𝑐𝑎𝑙 𝑏𝑟𝑒𝑚𝑜𝑡𝑒

→ Add sub to intersection

For each d in #Dimensions

On each local rank:

For each loc in #NumLocalBlocks

𝑃𝑙𝑜𝑐𝑎𝑙 = 𝑝 𝑃𝑙𝑜𝑐𝑎𝑙 = 𝐿𝑃𝑙𝑜𝑐𝑎𝑙 = 1

local

remote

Intersection = 𝑖1 × 𝑖2 ×⋯× 𝑖𝑑

Foyer, Tate, McIntosh-Smith, ”Aspen…” in: Euro-Par 2018: Parallel Processing Workshops, Springer

Results

Using UDJ

● Set specific transport method
● env

UDJ_TRANSPORT_ORDER=MPI,RADOS,FS

● Default is to automatically choose best available

● #include “udj.h”

● link with –ludj
● call udj_init()

● Define CDO views for data to be
transported using UDJ
● No data copying needed
● Distribution description and size

● General case

● … and convenience methods

● CDO ID (”Tag”)

● Send/Receive as needed
● Synchronous or asynchronous

● call udj_finalize()

Use and initialization: Runtime configuration

Advanced usage

Use multiple transports explicitly

Use scripting language interface
 SWIG wrappers for python for
udj.h

Integrating UDJ into an existing application: MPI-IO

/* SPMD MPI-IO write/read coupling */

double Matrix[dim1][dim2]; /* on each rank */

…

my_offset = MYRANK*dim1*dim2*sizeof(double);

MPI_File_open(MPI_COMM_WORLD, filename,…,&fh);

MPI_File_seek(fh, my_offset, MPI_SEEK_SET);

MPI_File_get_position(fh, &my_current_offset);

MPI_File_write(fh, &Array, dim1*dim2,

MPI_DOUBLE,…);

MPI_File_close(&fh);

Producer

/* SPMD MPI-IO write/read coupling*/

double Matrix[dim1][dim2]; /* on each rank */

…

MPI_File_open(MPI_COMM_WORLD, filename,…,&fh);

MPI_File_get_size(fh, &total_number_of_bytes);

my_offset

= MYRANK*total_number_of_bytes/NUMRANKS;

MPI_File_seek(fh, my_offset, MPI_SEEK_SET);

MPI_File_read(fh,Matrix,dim1*dim2,MPI_DOUBLE, …);

MPI_File_close(&fh);

Consumer

/* SPMD write/read coupling*/

double Matrix[dim1][dim2];

…

sender_dist

=udj_create_dist_cyclic1d(

numranks,put_ranks,{dim1,dim2});

receiver_dist

=udj_create_dist_cyclic1d(

numranks,get_ranks,{dim1}{dim2});

cdo_shape= {dim1,dim2}; /* rank-local size of data */

/* producer: */

udj_put_sync(Matrix,cdo_shape,sizeof(double),

sender_dist,receiver_dist,cdoid);

/* consumer: */

udj_get_sync(Matrix,cdo_shape,sizeof(double),

receiver_dist,sender_dist,cdoid);

Actual transport method selected at run time:

FS, Datawarp, Dataspaces, RADOS, MPI

Transparent cross-job RDMA network communication (DRC)

UDJ

UDJ 0.3.2 on MPI-DPM - baseline M:M transfer

(numnodes∗𝑛) × 𝑛 × 𝑛 data sets

1 rank per node

• Block-cyclic distribution that

happens to end up requiring 1:1

transfer

• Redistribution to TDOs

• Aggregation of consecutive

TDOs

• Chunking (2G default, tunable)

Cray XC30/40 Broadwell 28, 64G+ RAM, Aries interconnect

UDJ 0.3.2 on MPI-DPM – on-node scaling M:M transfer

Cray XC30/40 Broadwell 28, 64G+ RAM, Aries interconnect

(numnodes∗𝑛) × 𝑛 × 𝑛 data sets

1..28 ranks, 1:1 nodes

• Block-cyclic distribution that

happens to end up requiring 1:1

transfer

• Redistribution to TDOs

• Aggregation of consecutive

TDOs

• Chunking (2G default, tunable)

(No dedicated cores or hyperthreads for transport)

UDJ 0.3.2 on MPI-DPM – ‘easy’ redistribution

𝑘 × 𝑘 × 𝑘 blocks

2:1 rank ratio, 1 rank per node

Last dimension of receiver grid

accommodates process grid change

Aggregation of small (non-

consecutive) TDOs (tunable)

Largest grid yields 3’670’016 TDOs

per sender rank

Cray XC30/40, 128G+ RAM, Aries interconnect

KVL Current Workflow for WRF

WRF

INSHIMTU (Catalyst)

LUSTRE

ParaView

Netcdf Write

Netcdf Read

Netcdf

Netcdf

MPI-IO

MPI-IOT
im

e

• Need to read Netcdf files from LUSTRE

for post-processing.

• Relies on IO performance (shared)

• Is portable but still requires programming work

on consumer side (Netcdf)

KVL Workflow with UDJ (Options)

WRF

INSHIMTU (Catalyst)

LUSTRE

ParaView

Netcdf Write

Netcdf Read

WRF

UDJ API handles raw data

INSHIMTU (Catalyst)

ParaView

UDJ API handles raw data

UDJ Transfer

Current Using UDJ API

WRF

Intercept MPI-IO

Intercept Layer

Intercept Layer

INSHIMTU (Catalyst)

ParaView

UDJ Transfer

Netcdf

Netcdf

Netcdf

MPI-IO

Netcdf

MPI-IO

MPI-IO

MPI-IO

UDJ API handles file data

UDJ API handles file data

Implementation with UDJ-API

● Intercepted WRF before Netcdf output
● Used iso_c_binding to pass fields and metadata to a C routine

(producer) which is called by WRF.
● The producer calls UDJ (put) for the fields and metadata is transferred

via protobuf-c
● Initialization of parallel environment descriptor right after

MPI_Init_thread in WRF. An appropriate communicator is passed to
WRF.

● Using dummy consumer written in C
● Receives metadata in protobuf-c format and runs UDJ (get)
● Running consumer and WRF in MPMD mode with SLURM.

WRF(F)
Producer (C)

UDJ

protobuf-c Metadata over protobuf-c

Fields over UDF
Consumer (C)

UDJ

protobuf-c

Time Comparisons (Simple Example)

● Between Netcdf output and UDJ transfer to consumer.
● Time includes the transfer of metadata.

● Data for two files (one per domain). Both rather small and written
sequentially to LUSTRE.
● Note that the Netcdf write time is NOT the pure IO time.

● Substantial savings for both domains observed
● Netcdf data still has to be read by the consumer.

● Need to compare with distributed IO and larger cases.

File Size [MB] Netcdf Write [s] UDJ Transfer [s] Savings [%]

92 6.28 4.58 27.14

78 6.03 4.00 33.63

Acknowledgements

● HBP Pre-Commercial Procurement : UDJ development

● MAESTRO H2020-FETHPC-2017

● https://www.maestro-data.eu/

● EPIGRAM-HS H2020-FETHPC-2017

● https://epigram-hs.eu

● Plan4res EU project : Data Model, mixed transports

● https://www.plan4res.eu/

● MCSA-ITN EXPERTISE : data redistribution approaches

● www.msca-expertise.eu/

https://www.maestro-data.eu/
https://epigram-hs.eu/
https://www.plan4res.eu/
http://www.msca-expertise.eu/

