
Developing NEPTUNE for U.S. Naval

Weather Prediction

John Michalakes

University Corporation for Atmospheric Research/CPAESS

Boulder, Colorado USA

michalak@ucar.edu

Dr. Alex Reinecke

U.S. Naval Research Laboratory Marine Meteorology Division

18th ECMWF Workshop on HPC in Meteorology, 25 Sept. 2018

2

Acknowledgements

– NEPTUNE developers at NRL/MRY and NPS

James Doyle, Kevin Viner, Sasa Gabersek, Matus Martini, Dave Ryglicki,

Dave Flagg, Sarah King, Sergey Frolov, and Francis Giraldo

– Martin Berzins, Mike Kirby, Ouermi Judicael, Brad Peterson: U. Utah

– Sameer Shende, Nick Chaimov: U. Oregon/Paratools

– Christian Trott: Sandia NL (Kokkos)

– Doug Doerfler: Lawrence Berkeley NL (Roofline)

– Vendors: Cavium, Intel, NEC, NVIDIA, Portland Group

3

NEPTUNE/NUMA

• Navy’s Next Generation Prediction System

• Spectral element dynamics on a cubed sphere

– Based on NUMA (Frank Giraldo, NPS)

– Higher-order continuous Galerkin

– Cubed sphere grid

• Computationally dense but highly scalable

– Constant width-one halo communication

– Good locality for next generation HPC

NEPTUNE 72-h forecast (5 km
resolution) of accumulated

precipitation for Hurr. Sandy

Example of Adaptive Grid
tracking a severe event

courtesy: Frank Giraldo, NPS1NEPTUNE: Navy Environmental Prediction sysTem Utilizing the NUMA2 corE
2NUMA: Nonhydrostatic Unified Model of the Atmosphere (Giraldo et. al. 2013)

4

NEPTUNE/NUMA

• Navy’s Next Generation Prediction System

– Interoperable physics under NUOPC

– Data assimilation development under JEDI framework

– Coupling using ESMF framework

– Conducting tests with real forecast data

– Designing, testing and optimizing for next-gen HPC

• One month of real-data forecasts
initialized with GFS analysis fields

• 35-km horizontal grid spacing

5

Performance and Portability requirements

• Performance has lagged badly: good scaling

but poor node speed
– Insufficient fine-grain (vector) utilization

– Excessive data movement lowers C.I.

– Low locality increases mem. latency

• Portability limited by parallel programming

model (MPI/OpenMP/vector) and code structure
 Intel Xeon (Broadwell, Skylake, Knights Landing)

 ARM64 (Cavium ThunderX2)

 NEC VE

 GPU (Nvidia) (NPS has a NUMA port using OCCA†)

• Solution likely to require major refactoring
– Minimize one-time and recurring costs

– Maximize performance benefit over time and range

of architectures

Crucial: performance analysis and testing

starting with kernels

NEPTUNE (blue) 6.6x slower than FV3 in

NOAA benchmarks from 2015‡

†Abdi, D. S., Wilcox, L. C., Warburton, T. C., & Giraldo, F. X. (2017). A GPU-accelerated
continuous and discontinuous Galerkin non-hydrostatic atmospheric model. The
International Journal of High Performance Computing Applications, 1094342017694427.

‡https://www.weather.gov/media/sti/nggps/AVEC%20Level
%201%20Benchmarking%20Report%2008%2020150602.pdf

Diffusion kernel: create_laplacian

Purpose: Damp energy that cascades to

frequencies higher than model can resolve

• Local laplacian computed and applied on each 3D

element in CGD layout

+ Computationally dense, element-local, thread safe

• Global solution computed on CGC layout using

Direct Stiffness Summation (DSS) on points shared

by neighboring elements

– Copying from CGC to CGD to accumulate face

values requires transposition and non-unit strides

that trash data locality

– Potential data races impede thread parallelism

• Hot spot routine in NEPTUNE

– Original implementation only stored CGC layout and

copied into and out of local CGC arrays for every

subroutine in dycore

– Initial optimization: Pick a layout and stick with it

D
SS

co
p

y

CGD layout:

Continuous

Galerkin with

Replicated

Points

CGC layout:

Continuous

Galerkin with

Shared Points

https://github.com/michalakes/visckernel

https://github.com/michalakes/visckernel

Diffusion kernel: create_laplacian

Purpose: Damp energy that cascades to

frequencies higher than model can resolve

• Local laplacian computed and applied on each 3D

element in CGD layout

+ Computationally dense, element-local, thread safe

• Global solution computed on CGC layout using

Direct Stiffness Summation (DSS) on points shared

by neighboring elements

– Copying from CGC to CGD to accumulate face

values requires transposition and non-unit strides

that trash data locality

– Potential data races impede thread parallelism

• Hot spot routine in NEPTUNE

– Original implementation only stored CGC layout and

copied into and out of local CGC arrays for every

subroutine in dycore

– Key optimization: Pick a layout and stick with it

D
SS

co
p

y

CGD layout:

Continuous

Galerkin with

Replicated

Points

CGC layout:

Continuous

Galerkin with

Shared Points

Original NEPTUNE diffusion code

Stores data as CGC points

Copies in/out to CGD local arrays

Optimized Versions

Refactored to Store Data as Elements (CGD)

Only copy in and out to CGC for DSS

8

What can we control? Data layout and loops

element-inner arrays

dimension(ne,np,nv)

element-outer arrays

dimension(np,nv,ne)

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

element-inner loops

do v ← 1,nv

do p ← 1,np

do e ← 1,ne

unit
stride

unit
stride

unit
stride

unit
stride

Element Loop Nesting

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
Cache+ -local elements,
good locality
Vector dimension is •

limited to short, often
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain
innermost requires array
temporaries (cache,
mem. pressure)

Outer/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to
memory by successive
GPU threads

9

PX Optimization (element-outer)

element-outer arrays

dimension(np,nv,ne)

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

unit
stride

unit
stride

unit
stride

unit
stride

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements,

good locality
• Vector dimension is

limited to short, often
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain
innermost requires array
temporaries (cache,
mem. pressure)

Outer/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to
memory by successive
GPU threads

NEPTUNE Prototype•

Ported to•

Xeon•

ARM•

NEC VE•

Element Loop Nesting

10

PX Optimization (element-outer)

element-outer arrays

dimension(np,nv,ne)

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

unit
stride

unit
stride

unit
stride

unit
stride

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements,

good locality
• Vector dimension is

limited to short, often
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain
innermost requires array
temporaries (cache,
mem. pressure)

Outer/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to
memory by successive
GPU threads

• NEPTUNE Prototype

• Ported to

• Xeon

• ARM

• NEC VE

Element Loop Nesting

Original version

of hot-spot

diffusion kernel

on Skylake

“PX” optimized

version of hot-spot

diffusion kernel on

Skylake

0.364

0.079

Overall impact of first optimization pass

Purpose: Damp energy that cascades to

frequencies higher than model can resolve

• Local laplacian computed and applied on each 3D

element in CGD layout

+ Computationally dense, element-local, thread safe

• Global solution computed on CGC layout using

Direct Stiffness Summation (DSS) on points shared

by neighboring elements

– Copying from CGC to CGD to accumulate face

values requires transposition and non-unit strides

that trash data locality

– Potential data races impede thread parallelism

• Hot spot routine in NEPTUNE

– Original implementation only stored CGC layout and

copied into and out of local CGC arrays for every

subroutine in dycore

– Key optimization: Pick a layout and stick with it

D
SS

co
p

y

CGD layout:

Continuous

Galerkin with

Replicated

Points

CGC layout:

Continuous

Galerkin with

Shared Points

Original NEPTUNE diffusion code

Stores data as CGC points

Copies in/out to CGD local arrays

Optimized Versions

Refactored to Store Data as Elements (CGD)

Only copy in and out to CGC for DSS

Whole code optimization
• Vectorization of hot-spots
• OpenMP SMPD threading
• New Grid-to-Memory Layouts for Memory Locality
• Asynchronous MPI communication
• Bit-for-bit reproducibility (for debugging)
• Application of TAU from ParaTools under PETTT

H
ig

h
er

 is
 b

et
te

r

12

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

EPX (element-inner) Optimization

element-inner arrays

dimension(ne,np,nv)

element-inner loops

do v ← 1,nv

do p ← 1,np

do e ← 1,ne

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements,

good locality
• Vector dimension is

limited to short, often
non unit-stride accesses

Inner/Inner
Fine+ -grain dimension is
unit-stride, dependency-
free, and arbitrary length
Having fine• -grain
innermost requires array
temporaries (cache,
mem. pressure)

Outer/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to
memory by successive
GPU threads

• Xeon, ARM & NEC VE

OpenMP with vectorization

• Nvidia: OpenACC

(Thanks Dave Norton, PGI)

Element Loop Nesting

13

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

EPX (element-inner) Optimization – CPU

element-inner arrays

dimension(ne,np,nv)

element-inner loops

do v ← 1,nv

do p ← 1,np

do e ← 1,ne

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements,

good locality
• Vector dimension is

limited to short, often
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain
innermost requires array
temporaries (cache,
mem. pressure)

Outer/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to
memory by successive
GPU threads

Element Loop Nesting

Xeon, ARM & NEC VE•

OpenMP with vectorization

Nvidia: OpenACC•

(Thanks Dave Norton, PGI)

do ib = 1,neblk

nrun = LEBLK

(adjust nrun for partial blocks here)

!$acc loop

do ie = 1, nrun, EVEC

call create_laplacian_ep3(ib, ie, min(ie+EVEC-1,nrun)

extent of array in innermost element dimension (16 on CPU)

extent of vectorized-loops (array syntax) in routine

(same as LEBLK, outer loop executes only once)

es = 1, ee = LEBLK – each statement vectorizes

14

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

EPX (element-inner) Optimization – GPU

element-inner arrays

dimension(ne,np,nv)

element-inner loops

do v ← 1,nv

do p ← 1,np

do e ← 1,ne

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements,

good locality
• Vector dimension is

limited to short, often
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain
innermost requires array
temporaries (cache,
mem. pressure)

Outer/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to
memory by successive
GPU threads

Element Loop Nesting

• Xeon, ARM & NEC VE

OpenMP with vectorization

• Nvidia: OpenACC

(Thanks Dave Norton, PGI)

do ib = 1,neblk

nrun = LEBLK

(adjust nrun for partial blocks here)

!$acc loop

do ie = 1, nrun, EVEC

call create_laplacian_ep3(ib, ie, min(ie+EVEC-1,nrun)

extent of array in innermost element dimension (32 on GPU)

(Set to 1, so outer loop partitioned over 32 threads)

ee = es = +1 previous thread’s index, GPU memory accesses coalesced

15

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

EPX (element-inner) Optimization

element-inner arrays

dimension(ne,np,nv)

element-inner loops

do v ← 1,nv

do p ← 1,np

do e ← 1,ne

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements,

good locality
• Vector dimension is

limited to short, often
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain
innermost requires array
temporaries (cache,
mem. pressure)

Outer/Inner
Fine+ -grain dimension is
unit-stride, dependency-
free, and arbitrary length
Coalesced + accesses to
memory by successive
GPU threads

Element Loop Nesting

• Xeon, ARM & NEC VE

OpenMP with vectorization

• Nvidia: OpenACC

(Thanks Dave Norton, PGI)

Original version

“EPX” optimized on

V100, Skylake and THX2

0.060
0.074

0.106

0.364

16

Kokkos Implementation

element-inner arrays

dimension(ne,np,nv)

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

Loop Nesting

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements,

good locality
• Vector dimension is

limited to short, often
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain
innermost requires array
temporaries (cache,
mem. pressure)

Outer/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to
memory by successive
GPU threads

• Template-meta programming lib.

• Single source (C++)

• Xeon, ARM & NEC VE

• Nvidia V100

• https://github.com/kokkos

(Thanks: C. Trott, Sandia NL)

element-outer arrays

dimension(np,nv,ne)

unit
stride

unit
stride

unit
stride

unit
stride

Kokkos::LayoutRight

• GPU parallelizes outer loop over

Gangs then SIMT threads

• CPU parallelizes outer loop over

OpenMP threads option to

vectorized inner loop using

hierarchical parallelism

17

Kokkos Implementation

element-inner arrays

dimension(ne,np,nv)

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

Loop Nesting

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements,

good locality
• Vector dimension is

limited to short, often
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain
innermost requires array
temporaries (cache,
mem. pressure)

Outer/Inner
+ Fine-grain dimension is

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to
memory by successive
GPU threads

element-outer arrays

dimension(np,nv,ne)

unit
stride

unit
stride

unit
stride

unit
stride

Kokkos::LayoutRight

• GPU parallelizes outer loop over

Gangs then SIMT threads

• CPU parallelizes outer loop over

OpenMP threads option to

vectorized inner loop using

hierarchical parallelism

• Template-meta programming lib.

• Single source (C++)

• Xeon, ARM & NEC VE

• Nvidia V100

• https://github.com/kokkos

(Thanks: C. Trott, Sandia NL)

// Define Functor Class and Operators

typedef Kokkos::View<double [nelem][nvar][npts]> ViewNvarType ;

class CreateLaplacianFunctor {

ViewNvarType _q, _rhs ;

KOKKOS_INLINE_FUNCTION

CreateLaplacianFunctor(

const ViewNvarType q , const ViewNvarType rhs

) : _q(q) , _rhs(rhs) {} ;

KOKKOS_INLINE_FUNCTION

void operator()(CreateLaplacianTag,const size_t ie) const{ // compute laplacian

...

}

KOKKOS_INLINE_FUNCTION

void operator()(CreateGlobalTag, const size_t ie) const{ // DSS

...

}

} ;

int main (int argc, char *argv[]){

ViewNvarType rhs("rhs"), q("q") ; // construct views

// Executable

Kokkos::initialize(argc, argv) ;

Kokkos::parallel_for(Kokkos::RangePolicy<CreateLaplacianTag>(0,nelem),CreateLaplacian) ;

Kokkos::parallel_for(Kokkos::RangePolicy<CreateGlobalTag>(0,nelem),CreateLaplacian) ;

18

Performance results

0.364

0.066 0.066
0.060

0.074

0.106

0.079

19

Performance results

0.364

0.066 0.066
0.060

0.074

0.106

0.079

single source portable across

GPU and CPU

20

Performance results

0.364

0.066 0.066
0.060

0.074

0.106

0.079

single source portable across

GPU and CPU

21

Diffusion Kernel Performance Summary

Competitive Performance over Programming Models and Devices

✓ Kokkos

– GPU: Excellent fine-grained utilization on GPU

• Good occupancy; 25% to 100%; moderate register pressure

– CPU: Nearly identical performance to GPU

• Kokkos fails to exploit vectorization on CPU (8%) because of strictly element-outer

loops that only benefit OpenMP threading.

• Kokkos has mechanism for vectorizing explicitly (not arch. agnostic but fix coming)

– Good environment, user support: https://github.com/kokkos/kokkos/issues

✓ Element-inner (EPX) Fortran

– GPU: Best V100 performance with OpenACC

• Lower occupancy: 18.8% to 31% occupancy; high register pressure

– CPU: Skylake 20 percent slower than GPU

+ Excellent 85% vector utilization on CPU (both AVX512 and ARM)

• Large working set and L1 pressure and AVX-512 clock penalty

+ Dramatic 2x benefit from single-precision

• Element-outer (PX, the current whole-code optimized prototype)

– CPU-only, close to Kokkos CPU performance if vectorization disabled to

avoid compiler-generated scatter gathers around non unit-stride loops

p
e
rf

o
rm

a
n
c
e
 p

o
rt

a
b
le

22

Next steps

• Additional kernels covering NEPTUNE dynamics

• Effects of varying workloads, numerical order

• Evaluate other DSL approaches: GridTools, PSyKAl

• Whole code prototypes and testing

• Recommendation on refactoring with costs, benefits and timelines for

different options

23

24

Performance results

