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NEPTUNE/NUMA

• Navy’s Next Generation Prediction System

• Spectral element dynamics on a cubed sphere

– Based on NUMA (Frank Giraldo, NPS)

– Higher-order continuous Galerkin

– Cubed sphere grid

• Computationally dense but highly scalable

– Constant width-one halo communication 

– Good locality for next generation HPC

NEPTUNE 72-h forecast (5 km 
resolution) of accumulated 

precipitation for Hurr. Sandy

Example of Adaptive Grid 
tracking a severe event

courtesy: Frank Giraldo, NPS1NEPTUNE: Navy Environmental Prediction sysTem Utilizing the NUMA2 corE
2NUMA: Nonhydrostatic Unified Model of the Atmosphere (Giraldo et. al. 2013) 
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NEPTUNE/NUMA

• Navy’s Next Generation Prediction System

– Interoperable physics under NUOPC

– Data assimilation development under JEDI framework

– Coupling using ESMF framework

– Conducting tests with real forecast data

– Designing, testing and optimizing for next-gen HPC

• One month of real-data forecasts 
initialized with GFS analysis fields

• 35-km horizontal grid spacing
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Performance and Portability requirements

• Performance has lagged badly: good scaling 

but poor node speed
– Insufficient fine-grain (vector) utilization

– Excessive data movement lowers C.I.

– Low locality increases mem. latency

• Portability limited by parallel programming 

model (MPI/OpenMP/vector) and code structure
 Intel Xeon (Broadwell, Skylake, Knights Landing)

 ARM64 (Cavium ThunderX2)

 NEC VE

 GPU (Nvidia) (NPS has a NUMA port using OCCA†)

• Solution likely to require major refactoring
– Minimize one-time and recurring costs

– Maximize performance benefit over time and range 

of architectures

Crucial: performance analysis and testing

starting with kernels

NEPTUNE (blue) 6.6x slower than FV3 in 

NOAA benchmarks from 2015‡

†Abdi, D. S., Wilcox, L. C., Warburton, T. C., & Giraldo, F. X. (2017). A GPU-accelerated 
continuous and discontinuous Galerkin non-hydrostatic atmospheric model. The 
International Journal of High Performance Computing Applications, 1094342017694427.

‡https://www.weather.gov/media/sti/nggps/AVEC%20Level
%201%20Benchmarking%20Report%2008%2020150602.pdf



Diffusion kernel: create_laplacian

Purpose: Damp energy that cascades to 

frequencies higher than model can resolve

• Local laplacian computed and applied on each 3D 

element in CGD layout

+ Computationally dense, element-local, thread safe

• Global solution computed on CGC layout using 

Direct Stiffness Summation (DSS) on points shared 

by neighboring elements

– Copying from CGC to CGD to accumulate face 

values requires transposition and non-unit strides 

that trash data locality 

– Potential data races impede thread parallelism

• Hot spot routine in NEPTUNE

– Original implementation only stored CGC layout and 

copied into and out of local CGC arrays for every 

subroutine in dycore

– Initial optimization: Pick a layout and stick with it

D
SS

co
p

y

CGD layout:

Continuous 

Galerkin with 

Replicated

Points

CGC layout:

Continuous 

Galerkin with 

Shared Points

https://github.com/michalakes/visckernel

https://github.com/michalakes/visckernel


Diffusion kernel: create_laplacian

Purpose: Damp energy that cascades to 

frequencies higher than model can resolve

• Local laplacian computed and applied on each 3D 

element in CGD layout

+ Computationally dense, element-local, thread safe

• Global solution computed on CGC layout using 

Direct Stiffness Summation (DSS) on points shared 

by neighboring elements

– Copying from CGC to CGD to accumulate face 

values requires transposition and non-unit strides 

that trash data locality 

– Potential data races impede thread parallelism

• Hot spot routine in NEPTUNE

– Original implementation only stored CGC layout and 

copied into and out of local CGC arrays for every 

subroutine in dycore

– Key optimization: Pick a layout and stick with it

D
SS

co
p

y

CGD layout:

Continuous 

Galerkin with 

Replicated

Points

CGC layout:

Continuous 

Galerkin with 

Shared Points

Original NEPTUNE diffusion code 

Stores data as CGC points 

Copies in/out to CGD local arrays

Optimized Versions 

Refactored to Store Data as Elements (CGD) 

Only copy in and out to CGC for DSS
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What can we control?  Data layout and loops

element-inner arrays

dimension(ne,np,nv)

element-outer arrays

dimension(np,nv,ne)

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

element-inner loops

do v ← 1,nv

do p ← 1,np

do e ← 1,ne

unit 
stride

unit 
stride

unit 
stride

unit 
stride

Element Loop Nesting

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
Cache+ -local elements, 
good locality
Vector dimension is •

limited to short, often 
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain 
innermost requires array 
temporaries (cache, 
mem. pressure)

Outer/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to 
memory by successive 
GPU threads
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PX Optimization (element-outer)

element-outer arrays

dimension(np,nv,ne)

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

unit 
stride

unit 
stride

unit 
stride

unit 
stride

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements, 

good locality
• Vector dimension is 

limited to short, often 
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain 
innermost requires array 
temporaries (cache, 
mem. pressure)

Outer/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to 
memory by successive 
GPU threads

NEPTUNE Prototype•

Ported to•

Xeon•

ARM•

NEC VE•

Element Loop Nesting
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PX Optimization (element-outer)

element-outer arrays

dimension(np,nv,ne)

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

unit 
stride

unit 
stride

unit 
stride

unit 
stride

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements, 

good locality
• Vector dimension is 

limited to short, often 
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain 
innermost requires array 
temporaries (cache, 
mem. pressure)

Outer/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to 
memory by successive 
GPU threads

• NEPTUNE Prototype

• Ported to

• Xeon

• ARM

• NEC VE

Element Loop Nesting

Original version 

of hot-spot 

diffusion kernel 

on Skylake

“PX” optimized 

version of hot-spot 

diffusion kernel on 

Skylake

0.364

0.079



Overall impact of first optimization pass

Purpose: Damp energy that cascades to 

frequencies higher than model can resolve

• Local laplacian computed and applied on each 3D 

element in CGD layout

+ Computationally dense, element-local, thread safe

• Global solution computed on CGC layout using 

Direct Stiffness Summation (DSS) on points shared 

by neighboring elements

– Copying from CGC to CGD to accumulate face 

values requires transposition and non-unit strides 

that trash data locality 

– Potential data races impede thread parallelism

• Hot spot routine in NEPTUNE

– Original implementation only stored CGC layout and 

copied into and out of local CGC arrays for every 

subroutine in dycore

– Key optimization: Pick a layout and stick with it

D
SS

co
p

y

CGD layout:

Continuous 

Galerkin with 

Replicated

Points

CGC layout:

Continuous 

Galerkin with 

Shared Points

Original NEPTUNE diffusion code 

Stores data as CGC points 

Copies in/out to CGD local arrays

Optimized Versions 

Refactored to Store Data as Elements (CGD) 

Only copy in and out to CGC for DSS

Whole code optimization
• Vectorization of hot-spots
• OpenMP SMPD threading
• New Grid-to-Memory Layouts for Memory Locality
• Asynchronous MPI communication
• Bit-for-bit reproducibility (for debugging)
• Application of TAU from ParaTools under PETTT

H
ig

h
er

 is
 b

et
te

r



12

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

EPX (element-inner) Optimization

element-inner arrays

dimension(ne,np,nv)

element-inner loops

do v ← 1,nv

do p ← 1,np

do e ← 1,ne

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements, 

good locality
• Vector dimension is 

limited to short, often 
non unit-stride accesses

Inner/Inner
Fine+ -grain dimension is 
unit-stride, dependency-
free, and arbitrary length
Having fine• -grain 
innermost requires array 
temporaries (cache, 
mem. pressure)

Outer/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to 
memory by successive 
GPU threads

• Xeon, ARM & NEC VE

OpenMP with vectorization

• Nvidia: OpenACC

(Thanks Dave Norton, PGI)

Element Loop Nesting
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element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

EPX (element-inner) Optimization – CPU 

element-inner arrays

dimension(ne,np,nv)

element-inner loops

do v ← 1,nv

do p ← 1,np

do e ← 1,ne

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements, 

good locality
• Vector dimension is 

limited to short, often 
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain 
innermost requires array 
temporaries (cache, 
mem. pressure)

Outer/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to 
memory by successive 
GPU threads

Element Loop Nesting

Xeon, ARM & NEC VE•

OpenMP with vectorization

Nvidia: OpenACC•

(Thanks Dave Norton, PGI)

do ib = 1,neblk

nrun = LEBLK

(adjust nrun for partial blocks here)

!$acc loop

do ie = 1, nrun, EVEC

call create_laplacian_ep3( ib, ie, min(ie+EVEC-1,nrun)

extent of array in innermost element dimension  (16 on CPU)

extent of vectorized-loops (array syntax) in routine

(same as LEBLK, outer loop executes only once)

es = 1, ee = LEBLK – each statement vectorizes
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element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

EPX (element-inner) Optimization – GPU 

element-inner arrays

dimension(ne,np,nv)

element-inner loops

do v ← 1,nv

do p ← 1,np

do e ← 1,ne

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements, 

good locality
• Vector dimension is 

limited to short, often 
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain 
innermost requires array 
temporaries (cache, 
mem. pressure)

Outer/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to 
memory by successive 
GPU threads

Element Loop Nesting

• Xeon, ARM & NEC VE

OpenMP with vectorization

• Nvidia: OpenACC

(Thanks Dave Norton, PGI)

do ib = 1,neblk

nrun = LEBLK

(adjust nrun for partial blocks here)

!$acc loop

do ie = 1, nrun, EVEC

call create_laplacian_ep3( ib, ie, min(ie+EVEC-1,nrun)

extent of array in innermost element dimension  (32 on GPU)

(Set to 1, so outer loop partitioned over 32 threads)

ee = es = +1 previous thread’s index, GPU memory accesses coalesced
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element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

EPX (element-inner) Optimization

element-inner arrays

dimension(ne,np,nv)

element-inner loops

do v ← 1,nv

do p ← 1,np

do e ← 1,ne

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements, 

good locality
• Vector dimension is 

limited to short, often 
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain 
innermost requires array 
temporaries (cache, 
mem. pressure)

Outer/Inner
Fine+ -grain dimension is 
unit-stride, dependency-
free, and arbitrary length
Coalesced + accesses to 
memory by successive 
GPU threads

Element Loop Nesting

• Xeon, ARM & NEC VE

OpenMP with vectorization

• Nvidia: OpenACC

(Thanks Dave Norton, PGI)

Original version

“EPX” optimized on 

V100, Skylake and THX2

0.060
0.074

0.106

0.364
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Kokkos Implementation

element-inner arrays

dimension(ne,np,nv)

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

Loop Nesting

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements, 

good locality
• Vector dimension is 

limited to short, often 
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain 
innermost requires array 
temporaries (cache, 
mem. pressure)

Outer/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to 
memory by successive 
GPU threads

• Template-meta programming lib.

• Single source (C++)

• Xeon, ARM & NEC VE

• Nvidia V100

• https://github.com/kokkos

(Thanks: C. Trott, Sandia NL)

element-outer arrays

dimension(np,nv,ne)

unit 
stride

unit 
stride

unit 
stride

unit 
stride

Kokkos::LayoutRight

• GPU parallelizes outer loop over 

Gangs then SIMT threads

• CPU parallelizes outer loop over 

OpenMP threads option to 

vectorized inner loop using 

hierarchical parallelism
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Kokkos Implementation

element-inner arrays

dimension(ne,np,nv)

element-outer loops

do e ← 1,ne

do v ← 1,nv

do p ← 1,np

Loop Nesting

M
e
m

o
ry

 L
a
y
o
u
t

Inner/Outer
(null)

Outer/Outer
+ Cache-local elements, 

good locality
• Vector dimension is 

limited to short, often 
non unit-stride accesses

Inner/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

• Having fine-grain 
innermost requires array 
temporaries (cache, 
mem. pressure)

Outer/Inner
+ Fine-grain dimension is 

unit-stride, dependency-
free, and arbitrary length

+ Coalesced accesses to 
memory by successive 
GPU threads

element-outer arrays

dimension(np,nv,ne)

unit 
stride

unit 
stride

unit 
stride

unit 
stride

Kokkos::LayoutRight

• GPU parallelizes outer loop over 

Gangs then SIMT threads

• CPU parallelizes outer loop over 

OpenMP threads option to 

vectorized inner loop using 

hierarchical parallelism

• Template-meta programming lib.

• Single source (C++)

• Xeon, ARM & NEC VE

• Nvidia V100

• https://github.com/kokkos

(Thanks: C. Trott, Sandia NL)

//  Define Functor Class and Operators

typedef Kokkos::View<double [nelem][nvar][npts]>    ViewNvarType ;

class CreateLaplacianFunctor {

ViewNvarType _q, _rhs ;

KOKKOS_INLINE_FUNCTION

CreateLaplacianFunctor(

const ViewNvarType q , const ViewNvarType rhs

) : _q(q) , _rhs(rhs) {} ;

KOKKOS_INLINE_FUNCTION

void operator()(CreateLaplacianTag,const size_t ie) const{ // compute laplacian

...

}

KOKKOS_INLINE_FUNCTION

void operator()(CreateGlobalTag, const size_t ie) const{ // DSS

...

}

} ;

int main ( int argc, char *argv[] ){

ViewNvarType rhs("rhs"), q("q") ;   // construct views

// Executable

Kokkos::initialize( argc, argv ) ;

Kokkos::parallel_for(Kokkos::RangePolicy<CreateLaplacianTag>(0,nelem),CreateLaplacian) ;

Kokkos::parallel_for(Kokkos::RangePolicy<CreateGlobalTag>(0,nelem),CreateLaplacian) ;
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Performance results

0.364

0.066 0.066
0.060

0.074

0.106

0.079
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Performance results

0.364

0.066 0.066
0.060

0.074

0.106

0.079

single source portable across

GPU and CPU
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Performance results

0.364

0.066 0.066
0.060

0.074

0.106

0.079

single source portable across

GPU and CPU
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Diffusion Kernel Performance Summary

Competitive Performance over Programming Models and Devices

✓ Kokkos

– GPU: Excellent fine-grained utilization on GPU

• Good occupancy; 25% to 100%; moderate register pressure

– CPU: Nearly identical performance to GPU

• Kokkos fails to exploit vectorization on CPU (8%) because of strictly element-outer 

loops that only benefit OpenMP threading.

• Kokkos has mechanism for vectorizing explicitly (not arch. agnostic but fix coming)

– Good environment, user support: https://github.com/kokkos/kokkos/issues 

✓ Element-inner (EPX) Fortran

– GPU: Best V100 performance with OpenACC

• Lower occupancy: 18.8% to 31% occupancy; high register pressure

– CPU: Skylake 20 percent slower than GPU

+ Excellent 85% vector utilization on CPU (both AVX512 and ARM)

• Large working set and L1 pressure and AVX-512 clock penalty

+ Dramatic 2x benefit from single-precision

• Element-outer (PX, the current whole-code optimized prototype)

– CPU-only, close to Kokkos CPU performance if vectorization disabled to 

avoid compiler-generated scatter gathers around non unit-stride loops

p
e
rf

o
rm

a
n
c
e
 p

o
rt

a
b
le
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Next steps

• Additional kernels covering NEPTUNE dynamics

• Effects of varying workloads, numerical order

• Evaluate other DSL approaches: GridTools, PSyKAl

• Whole code prototypes and testing

• Recommendation on refactoring with costs, benefits and timelines for 

different options
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Performance results


