Improving Satellite Data Utilization Through Deep Learning

September 26th, 2018

NOAA Earth System Research Laboratory (ESRL), Boulder, CO
*Cooperative Institute for Research in the Atmosphere (CIRA)
**Cooperative Institute for Research in Environmental Sciences (CIRES)
***NVIDIA Corporation
AI, MACHINE LEARNING, AND DEEP LEARNING

ARTIFICIAL INTELLIGENCE
Early artificial intelligence stirs excitement.

MACHINE LEARNING
Machine learning begins to flourish.

DEEP LEARNING
Deep learning breakthroughs drive AI boom.

Source: Michael Copeland, Journalist for WIRED, Fortune, and Business 2.0
Machine Learning

• “.. at its most basic is the practice of using algorithms to parse data, learn from it, and then make a determination or prediction about something in the world.” -- Nvidia
• It’s been around a while ~ 1959
• Closely related to statistics

Recent explosion lead by advances in processing power, availability of data, techniques, and tools
Deep Learning

• Deep learning is a subset of machine learning and uses a layered structure called an artificial neural network.

• The design is inspired by the biological neural network similar to the human brain. Learns and makes decisions on its own.

• Similar to humans, we never get to the bottom of their thoughts from a cellular point of view, hard to explain why it works.

• Very good at:
 - Object Detection
 - Time Series Data - Natural Language Processing

Another way to write software
Challenges – Operational Constraints

- The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast.
- Not all observations have equal value.
- With limited time, how do we best to extract the observations with greatest impact?
- Increasing forecast model resolution (ie sub 3 KM) is dependent on improved model assimilation.
Satellite Data Assimilation Today

- There are far more satellite data than can be assimilated into the models.
- At present, we use only ~3% of the available satellite data.
- Next generation Geostationary Satellites (GOES-16, GOES-17):
 - Order of magnitude increase in data volume!!
Regions of Interest (ROI’s)

- Use deep learning object detection to identify areas of atmospheric instability from satellite observation data.
- Focus the extraction of observations on these regions of interest.
- Identify other important phenomena for forecasting from satellite data:
 - convective instability
 - baroclinic instability
 - convective initiation
Development of Training Data

Labeling Data

- Global Forecast System (GFS) analysis data provides various data (e.g., temperature, pressure, humidity).
- International Best Track Archive for Climate Stewardship (IBTrACS) provides tropical cyclone track data, including timestamps, positions, strength, radius, etc.
- Precipitable Water is a good proxy for Water Vapor observations from satellites.
Development of Training Data for all Cyclones

Creating a labeled dataset of tropical cyclones and worldly low/cyclonic systems

• GFS analysis data
• Matrix of 1’s and 0’s for True and False label
• Next steps: cyclogenesis and convection initiation

Literature background on formal definitions of the following characteristics for cyclones:

• Previous cyclone tracking and forecasting methods
 • Create our own for labeling purposes
• Formal area, size, intensity, and physical features
• Meteorologists know what these systems look like, so how would a meteorologist tell a computer what to look for?
 • Signatures in water vapor, pressure fields, vorticity, etc.

Image above gives an example of the tropical cyclone labeled dataset. Shown are total precipitable water in entire atmosphere, pink labeled tropical cyclone centers, and then highlighted regions that define the area of the storm.
Data processing

• Images processing concept: Sliding Windows

• Sliding windows help:
 • Small / Unbalanced data set problem
 • Only a few true but many false samples
 • boundary problem
 • A cyclone is not located in the center of cell, is cut by the boundary
Classification with Sliding Window

Total Precipitable Water from GFS
Deep Learning Development for Image Segmentation

Keras
• https://keras.io
• High Level Deep Learning Library using Google Tensorflow under the hood

Unet - Deep Neural Network
• Links larger features before compression with smaller features after compression
• Commonly seen in image segmentation challenges on Kaggle.com
Segmentation with Sliding Window

Total Precipitable Water from GFS
Problems with Sliding Window

Duplicate Data
• Each window contains identical information from previous window

Slower Inference
• Need to split up incoming data into windows
• Need to process prediction back into result

Classification results in “Smeared” Picture
Training Data - Using GFS

- Precipitable water from Global Forecast System (GFS) model analysis
- Storm Centers from IBTracs dataset
- Input data normalized to range from -1 to +1
- Trained 2010-2013 Validation 2014, Test 2015
- Image segmentation 20x20 pixel segmentation box centered on tropical systems
- Only use storms classified as Tropical Storm or greater on Saffir Simpson Scale
 - 34 knots and above

~ 7200 Total Labeled data
What the network looks like
Segmentation with Fully Connected Network

Total Precipitable Water from GFS
Using Satellite Data for Training

- Water Vapor Channel from GOES 10, 11, 12, 13, 14, and 15
- Storm centers from IBTracks Dataset
- Data normalized to range from -1 to +1
- Trained 2010-2013, Validated 2014, Test 2015
- Images resized and cropped to 1024x512
- Image segmentation 25x25 pixel box, segmentation centered on storm
- Only use storms classified as Tropical Storm or greater on Saffir Simpson Scale
 - 34 knots and above
 ~ 4500 Labeled Data
Segmentation with Fully Connected Network

Water Vapor GOES-15
Training Details

NOAA High Performance Computing System

Theia

- 100 nodes
- Each node has two 10 core Haswell processors
- Each node has 256 GB of memory
- Each node has 8 Tesla P100 (Pascal) GPUs.
 - 16 GB Memory Each
Training Time - GFS Data

- Keras Multi GPU Setting to use multi-gpu single node configuration
 - GFS Model Data
 - 704x320x1
 - 1.2 GB per image
 - 72 Images per batch (~ 10.8 GB Per GPU)
 - ~ 80 seconds per epoch
 - Early stopping ~ 70 epochs (~ 1.5 hours for complete training)
 - Inference ~ 40 ms

- Comparison to CPU
 - 7 Hours Per Epoch
 - ~ 500 Hours to Complete Training!
 - Inference ~ 1 Second
Training Time - Satellite Data

- Keras Multi GPU Setting to use multi gpu single node configuration
 - Satellite Data
 - 1024x512x3 (RGB)
 - 2.6 GB per image
 - 24 Images per batch (~ 7.8 GB Per GPU)
 - ~ 3 minutes per epoch
 - Early stopping ~ 70 epochs (~ 3 hours for complete training)
 - Inference ~ 40 ms

- Comparison to CPU
 - 11.5 hours per epoch
 - ~ 400 Hours to Complete Training!
 - Inference ~ 1 Second
Multi GPU Scaling

Epoch Time Versus GPU

- Batch Size
- Epoch Time (s)
Other Deep Learning Applications

Soil Moisture from Satellite Radiances

- Use machine learning to correlate radiances from GOES-16 ABI to generate soil moisture product for model assimilation
- Working with CIRA, Kyle Hilburn and Steve Miller
Future Work for Deep Learning/AI

- Different color palette (RGB) channels
- Use actual storm radius values for segmentation
- Time series (3+ time steps into channels)
- Trim labels near oblique angles (edges) for satellite data
- Multi Node Multi GPU using Horovod

https://github.com/uber/horovod
Many Other Potential Applications

- Improved Speed, performance, accuracy of Model Functions like Radiative Transfer Models, Convection Parameterization, or other parameterized functions
- Classification of Atmospheric Conditions from Satellite for Improved Model Verification
- Air Quality Probabilities for Taiwan
- Bias correction from observations
- Assist HRRR Smoke in cleaning fire detection observations (prescribed vs fire vs other)
- Chemistry modeling optimization for different species
- Investigate hurricane intensification probabilities. (NWS SSDs)
Questions?

Jebb.Q.Stewart@noaa.gov
DEEP Convolutional NEURAL NETWORK (DNN)

Application components:

Task objective
e.g. Identify face

Training data
10-100M images

Network architecture
~10s-100s of layers

1B parameters

Learning algorithm
~30 Exaflops

1-30 GPU days
WHAT IS A CONVOLUTION?

A refresher of 2D convolutions

\[
\text{Conv}(I,F) = F_1 I_{11} + F_2 I_{12} + F_3 I_{13} + F_4 I_{7} + F_5 I_{18} + F_6 I_{9} + F_7 I_{13} + F_8 I_{14} + F_9 I_{15}
\]

... and so on until you’ve covered the entire image with filter
WHAT IS A CONVOLUTION?

Center element of the kernel is placed over the source pixel. The source pixel is then replaced with a weighted sum of itself and nearby pixels.

The values of the filter/feature/kernel are parameters determined during DNN training. There are various initialization strategies, but typically can just start with random values.
CONVOLUTION EXAMPLE: SOBEL FILTER

\[
G_x = \begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix}
\]

\[
G_y = \begin{bmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{bmatrix}
\]

\[
G = \sqrt{G_x^2 + G_y^2}
\]

CONVOLUTION EXAMPLE: SOBEL FILTER

\[G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \]

\[G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \]

\[G = \sqrt{G_x^2 + G_y^2} \]