

https://www.maestro-data.eu/

Towards Enabling Memoryand Data-Aware HPC

Dirk Pleiter Reading, 25.09.2018

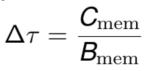
**** * * * *

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 801101

Outline

- Motivation
- Project
- Shortcomings and alternative concepts
- Applications
- Solution strategies
- Summary

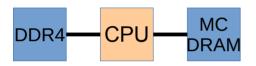
Motivation

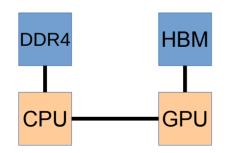


Memory Technology Trends

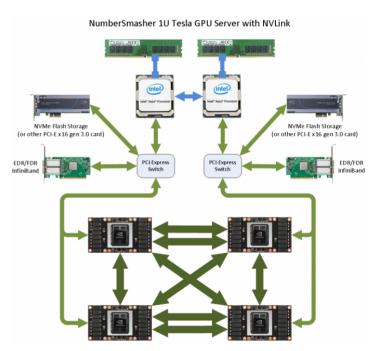
- Desirable memory performance features
 - Large memory capacity C_{mem}
 - High memory bandwidth B_{mem}
- Different memory technologies being integrated into HPC systems
 - DDR DIMMs: DDR3, DDR4, ...
 - High-bandwidth memory technologies: HBM, HMC/MCDRAM
 - Non-volatile memory technologies: NAND Flash, 3D-Xpoint
- Significant differences in terms o $\Delta \tau = \frac{C_{\rm m}}{2}$

CSCS

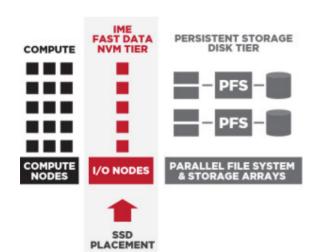



Hierarchical Memory Architectures

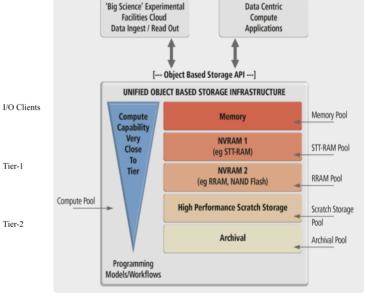



Knights Landing

GPU accelerators



Hierarchical Storage Architectures


- Burst buffers
 - Example: DDN IME

SAGE

http://www.sagestorage.eu/

Tier-3

Tier-4

Application Requirements

- Increasingly complex workflows
 - Coupled applications
 - Human-in-the-loop
- Vast increase of data volumes
 - High data rate + large data volumes

Project

Consortium

- Industrial partners
 - Cray (Switzerland), Seagate (UK)
- Research organisations / supercomputing centres
 - CEA (France), CSCS (Switzerland), ECMWF (international), JSC (Germany)
- SME
 - appentra (Spain)

Goals

- Develop a middleware providing consistent data semantics to multiple layers of the stack
- Demonstrate progress for applications through memoryand data-aware (MADA) orchestration
- Enable and demonstrate next-generation systems software MADA features
- Improve the ease-of-use of complex memory and storage hierarchy

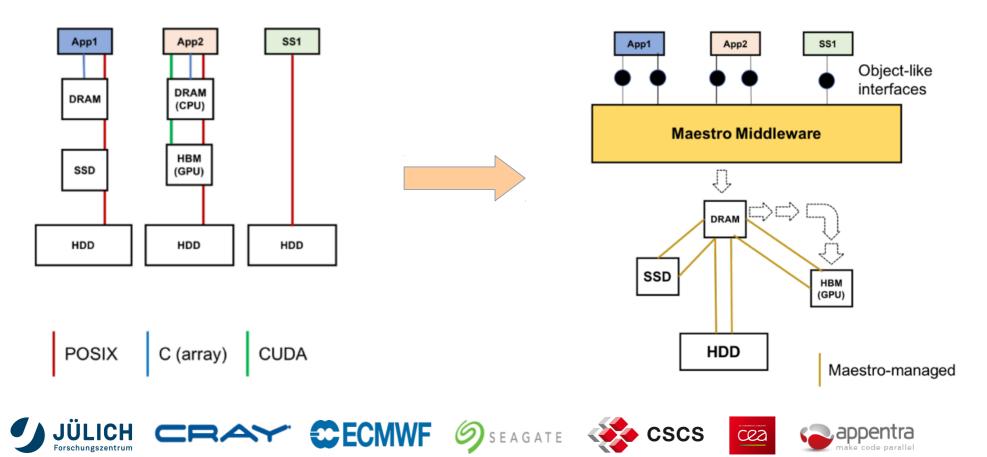
Shortcomings and Alternative Concepts

Lacking Data Awareness

- Software stacks focussing on data processing
 - Optimised for filling of processing pipelines
 - Provide means for leveraging parallelism
- Lacking focus on basic data handling
 - Lacking functionality for controlling data handling
 - Lacking (unified) semantics for guiding data transport

Lacking Memory Awareness

- Missing information about available memory/storage hardware and its characteristics
 - Lacking ability for making data transport decisions
 - Missing information leads to hardware-neutral decisions
- Challenging variety of data access methods
 - Example storage class memory: Block store, file system, object storage

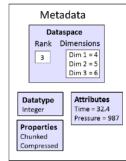


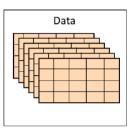
Maestro Vision

Concept

- Core data model
 - Provide data object semantics consistent at different layers
- Memory system model
 - Provide locality, access and performance information
- Higher-level middleware providing
 - Data access and adaptive transport capabilities
 - Workflow tools

Workflows. applications, system software **Higher-level** middleware Core data model Memory system model **Higher-level** middleware Hardware

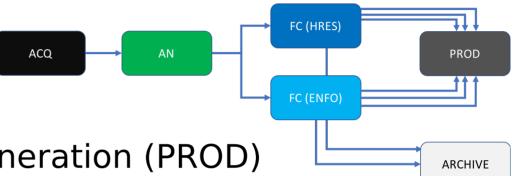




- HDF5
 - Object oriented
 - Concept of data sets comprising data and metadata
- Conduit
 - Designed for exchanging data in HPC simulations (used, e.g., in VisIt)
 - API that allows to describe hierarchical data

"coords": "x": [0.0, 1.0, 2.0], "v": [0.0, 1.0, 2.0] }. "fields": "density": "values": [1.0, 1.0, 1.0, 1.0]

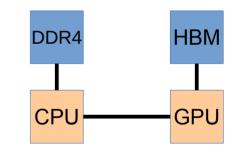
Applications



Numerical Weather Prediction

- Today's bottlenecks
 - Data movement
 between forecast (FC)
 stages and product generation (PROD)
 - Irregular archiving of output from research workflows
- Solution strategy: Enable middleware avoiding multiple transfers based on suitable data object semantics

CSCS


Materials Science

- Reference code: SIRIUS
 - Library providing building blocks for electronic structure applications
 - Written for GPU acceleration
- Aim for improved management of host and device memory resources
 - Awareness of data locality

RAY

- Facilitate simpler data access and transport
 - Example: Processing of data objects that exceed device memory capacity

CSCS



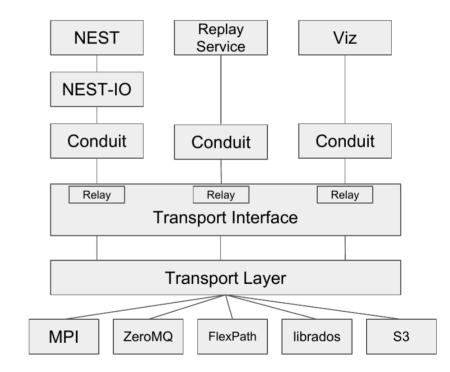
ESM Workflows

- TerrSysMP coupled workflow
 - Different workflow components coupled through OASIS3
 - Exchange of 2-/3-dimensional data structures
- Limitations of coupler
 - MPI based
 - Restrictive data semantics
- Similar problem class: Coupling to viz

CSCS

Cez

Target Solutions



Coupling Simulation and Viz

- Brain modelling needs
 - Monitor simulation
 - Steer simulation
- Challenges
 - Proprietary data models/ coupling APIs
 - Restrictive options for data transport

Data-Aware Code Analyser

ECMWF SEAGATE

- Existing parallelware analyser
 - Identification of parallel patterns
 - Can, e.g., be used for proposing parallelisation/acceleration directives
- Maestro aims for (semi)automatic identification of
 - In-memory data layout
 - Data access patterns

23

Summary

Summary

- Lacking data- and memory-awareness
- Maestro wants to overcome this limitation by
 - Defining data object models with a rich semantics
 - Provide an object-like interface to existing data
 - Allow applications to give (or take back) control of data handling to Maestro
- Strongly application driven approach
 - Crucial for getting design and scope right
 - Needed for being able to demonstrate benefits
 - Ambition to provide benefits to key research fields

