

The NEXTGenIO Project

Dr David Henty d.henty@epcc.ed.ac.uk

Current trends & approaches

25/09/2018

Burst buffer

25/09/2018

Moving beyond burst buffer

- Non-volatile is coming to the node rather than the filesystem
- Argonne Theta machine has 128GB SSD in each compute node

Non-volatile memory

- Non-volatile RAM
 - Intel's DC Persistent Memory technology is one example
- Much larger capacity than DRAM
 - Hosted in the DRAM slots (DIMM form factor), controlled by a standard memory controller
- Slower than DRAM by a small factor, but significantly faster than SSDs

The NEXTGenIO approach

NEXTGenIO key facts

- FETHPC Research & Innovation Action
- 48 months, 1 year to go
- 8 partners, covering
 - Hardware
 - HPC centres and users
 - Software
 - Tools developers

FUITSU TECHNISCHE OR

25/09/2018

Our objectives

- Develop a hardware platform prototype
 - Demonstrate applicability of NV memory for both HPC and data centric applications
- Exascale I/O investigation
 - Understanding how best to exploit NVRAM
- Systemware development
 - Producing the necessary software to enable (Exascale) application execution on the hardware platform
- Application co-design
 - Understanding individual application I/O profiles & typical I/O workloads and their requirements

NVRAM properties

25/09/2018

Modes of operation

One-level memory

- DRAM and NVRAM are two separate memory spaces
 - A bit like Flat Mode on KNL
- NVRAM is persistent

Two-level memory

- DRAM acts as cache
 - A bit like Cache Mode on KNL
- NVRAM is not persistent in this case
- Reboot required to change between modes
- Possible to partition NVRAM and create "app direct" space for twolevel memory

Two-level memory

- Memory controller views
 DRAM like any other cache
- Applications only see NVRAM as large memory space
- Latency of byte-addressable SCM ~5-10x of DDR4 memory when connected to the same memory channels
- Not necessary to change applications to exploit SCM

One-level memory

- Only DRAM visible as memory
- Direct loads/stores from/to NVRAM
- Use NVRAM as very fast byte-addressable persistent local storage
 - local or distributed file system
 - object store
 - check-pointing
- Two options for support of applications
 - Modify applications
 - Enable via system software

Two-level memory with partitioning

- NVRAM space can be partitioned
- Partially used as memory (not persistent) and as "app direct" (persistent)
 - Think "hybrid" mode on KNL

Hardware architecture

25/09/2018

Hardware

25/09/2018

Hardware (2)

25/09/2018

Use cases & systemware architecture

25/09/2018

Use cases & scenarios for NVRAM

Systemware overview diagram

25/09/2018

Systemware components

Job scheduler	 NVRAM resource monitored and managed by scheduler Data locality and energy awareness
Data scheduler	 Data movement and shepherding Between nodes, and to/from external storage
Object store	Support for NVRAMDAOS, dataClay
File system	 Local, on-node (scratch) Distributed across NVRAM
Programming environment	 I/O libraries (MPI I/O, HDF5, NetCDF) Tasking frameworks

Example: workflows (2)

• 3-part workflow

- Output from Part 1 \rightarrow input to Part 2
- Output from Part 2 \rightarrow input to Part 3

The challenge of distributed storage

- Enabling all the use cases in multi-user, multi-job environment is the real challenge
 - Heterogeneous scheduling mix
 - Different requirements on the NVRAM
 - Scheduling across these resources
 - Enabling sharing of nodes
 - Not impacting on node compute performance
- Enabling applications to do more I/O
 - Large numbers of our applications do not heavily use I/O at the moment
 - What can we enable if I/O is significantly cheaper?

Persistence

- Scenarios that exploit the capacity of NVRAM are clear
- Use cases for persistence however are much less obvious
- Possible examples
 - Workflows *could* benefit from persistence
 - In-memory databases for long term use
 - Datasets shared between multiple users for long running jobs
 - Resilience
 - "Closing the lid" on your supercomputer...?

More information

Michèle Weiland, Adrian Jackson, Nick Johnson & Mark Parsons, "*Exploiting the Performance Benefits of Storage Class Memory for HPC and HPDA Workflows*". Supercomputing Frontiers and Innovations, Vol 5, no. 1, pp. 79-94. doi.org/10.14529/jsfi180105

Adrian Jackson, Michèle Weiland, Mark Parsons, Bernhard Homölle, "Architectures for High Performance Computing and Data Systems using Byte-Addressable Persistent Memory", <u>http://arxiv.org/abs/1805.10041</u>

Questions?

www.nextgenio.eu

