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Computational aspects and performance evaluation of the IFS-XIOS integration

Abstract

The increment of the spatial resolution for computational Earth system models is nowadays
one of the main concerns of the scientific community in order to solve more complex prob-
lems, and thus, achieve more accurate solutions to the reality. However, the new complexity
requires more computing power that only cutting-edge supercomputers can provide. This re-
quires to use sophisticated HPC techniques to efficiently use the computational resources. In
addition, such high resolutions lead to generate an enormous amount of data to meticulously
represent accurate solutions.

Current Earth system models usually have inefficient sequential I/O schemes that used to
run low grid resolutions, where the generated amount of data for the simulation results was
not particularly big. However, sequential I/O schemes do not scale with current models
where a lot of parallel resources are used. In order to address this issue, the most adopted
approach is to use scalable parallel I/O solutions that offer both computational performance
and efficiency.

This document analyzes the I/O process of IFS, one of the most important atmospheric
models used in Europe. IFS has two different output schemes, the MF I/O server and a
sequential I/O scheme, being the latter the only available in OpenIFS. This sequential scheme
is characterized by being inefficient, since all the output is made through the master process.
Therefore, here it is presented an easy-to-use development that integrates an asynchronous
parallel I/O server called XIOS into IFS. Moreover, different optimization techniques, such
as computation and communication overlap, are applied in the integration development to
minimize the I/O overhead in the resulting IFS execution.

The results show that the use of XIOS in IFS to output data is certainly good. This new
parallel scheme has reduced significantly the execution time of the original sequential scheme.
Using the proper configuration, XIOS proves to be a scalable I/O server that keeps a low
overhead regardless the amount of IFS processes and the output size. Furthermore, XIOS
offers a series of benefits that shorten the critical path of IFS experiments by concurrently
running the post-processing task along the IFS execution: data format conversion, online
post-processing and CMIP-compliant output. In this scenario, the total execution time is
greatly reduced.
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1 Introduction

Over the years, computing power of supercomputers has grown exponentially [1]. Scientific
applications from all disciplines have benefited of it by increasing the complexity of the com-
putational models used. This new complexity turns into extra computational cost added using
different methods, from the increase in the horizontal or vertical resolution of spatial grids to the
interaction in parallel of new components simulating additional features (biochemistry, ice, etc.).
When this kind of applications have available more computational resources, they can afford to
solve more complex problems leading to more accurate solutions. For example, the increase of
the horizontal spatial resolution, in ocean models for areas near to the coast, allow to correctly
simulate some small-scale processes such as eddies [2]. However, a higher resolution implies
to generate much more data because the representation of these small-scale processes requires
more points. One of the main problems is to efficiently write this such amount of data along
the execution of applications. The second main problem is to post-process this data afterwards.
Post-processing is the phase where data is transformed using defined operations, such as data
format conversion, computation of new derived variables known as diagnostics, etc.

A good example where this extra computational power has been used is in the field of Earth
System Modelling (ESM). Numerical weather and climate prediction has considerably improved
the accuracy of forecasts, predictions and projections due to the increase of the grid resolution [3].
Obviously, taking advantage of this extra computational power requires to properly use efficient
High Performance Computing (HPC) techniques. Traditionally, the focus of improvement from
a computational point of view in ESM has been the calculation and communication of algorithms
[4]: the increase of the Instruction Level Parallelism (ILP); the massively parallelization of code
using heterogeneous platforms such as Graphic Processing Units (GPUs) or Intel Xeon Phis;
the memory access; the compiler tuning; the optimization of Message Passing Interface (MPI)
patterns; and many more.

One of the most important issues studied to improve the computational efficiency are workload
imbalances between processes [5][6]. Workload imbalances happen when the amount of work
to be solved for each one of the processes is not evenly distributed, so this causes that some
processes have more work to solve than others. Then, processes that finish earlier have to
wait for the slowest ones. This problem gets worse when more processors are used, since the
workload distribution is more complex. Another issue to be taken into account are the possible
workload imbalances due to the type of grid used in Earth system models. Grids are used as
spatial representation to discretise the Earth’s surface to solve equations on evenly distributed
grid-points. However, depending on the type of grid, the domain decomposition could be more
or less complex. As an example of the type of grid used for this work, using regular reduced
Gaussian grids has some intrinsic problems on the Earth poles [7][8], where the computation
and communication among neighbors (to fulfill spatial dependencies) is much more expensive
compared to other regions of the Earth, such as the Equator. This is because it is necessary to
use a more complex domain decomposition.

Although ESM community has done considerable efforts to improve models from an algorithmic
point of view, there is a very important aspect that has almost been forgotten during many
years because it was not significant enough in the past: the Input/Output (I/O). Due to the
new complexity of models, it will become really difficult to exploit computational resources to
achieve more accurate results without performing an efficient I/O, because Earth system models
are significantly increasing the number of variables to be output, as well as the output frequency
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of variables. The output process is usually performed at the end of specific time steps, during
the execution of the model. This process has increased the execution time during the last years,
since more and more data has to be stored from higher grid resolutions. In the end, an inefficient
I/O process could lead to a serialization where all resources are waiting to complete this critical
task. Moreover, since we are rapidly approaching the exascale era, the I/O part will become a
truly bottleneck [9], mainly because of the produced huge amount of data. Exascale computers
are future machines that will have at least one exaFLOP, or a billion billion calculations per
second. On these machines, models will be potentially able to simulate ultra-high resolutions,
but if the I/O process is not optimized at the same time, everything will slow down and will not
be possible to achieve the future ambitious goal of having more complex models.

One of the models that could be in this situation is the Integrated Forecasting System (IFS).
IFS [10] is a global data assimilation and forecasting system developed by the European Centre
for Medium-Range Weather Forecasts (ECMWF) and used by several institutions in Europe.
IFS has two different output schemes: a sequential output scheme which gathers all data in the
master process, and the Météo-France (MF) I/O server which is an efficient I/O scheme that
uses dedicated resources to perform the I/O. While ECMWF uses the MF I/O server for its
operational forecasts, external institutions have to use the sequential output scheme. This is the
case of one of the global climate models most used in Europe, the EC-Earth model, which uses
a limited version of IFS as its atmospheric component.

EC-Earth [11] is a global coupled climate model, which integrates a number of component models
in order to simulate the Earth system. It is used for problems encompassing from seasonal-to-
decadal climate prediction to climate change projections and paleoclimate simulations. In Figure
1 there is a scheme showing the components of EC-Earth.

Figure 1: Components used in the EC-Earth model

The two main components are IFS as the atmospheric model and the Nucleus for European
Modelling of the Ocean (NEMO) as the ocean model, both coupled using OASIS3-MCT.

Climate models such as EC-Earth are a very good example to prove that an efficient I/O will be
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needed for the future. They are run to simulate really extensive periods of time which turns into
an enormous amount of data which has to be saved for prediction and projection analyses. For
example, in a recent EC-Earth experiment consisting in a 100 years projection, it was generated
a total amount of 244 TB of useful data. Only for IFS were used 4416 processors, consuming
about 2.47 million computing hours.

Additionally, there are other tasks that are included typically in the workflow of an Earth system
model, apart from the task used to solve the governing equations along the time. These tasks
are known as pre-processing and post-processing and they are used to process the input and
output data. For example, in the pre-processing task there could be the preparation of the
initial conditions which are needed to run any model, whereas in the post-processing task there
could be the computation of derived variables, known as diagnostics. Diagnostics are a type
of variables computed from other variables, typically prognostic variables which are directly
predicted by the model.

Figure 2 illustrates a really simple experiment which contains three tasks: pre-processing, sim-
ulation and post-processing. The time needed to complete the three tasks is known as critical
path, because there are dependencies between them and must be sequentially executed.

Figure 2: Critical path of a basic experiment with three tasks sequentially executed

In particular, the post-processing task in EC-Earth is characterized by being quite expensive,
because it needs to transform General Regularly-distributed Information in Binary form (GRIB)
files output by IFS to Network Common Data Format (netCDF) files. This is necessary because
IFS was originally developed for Numerical Weather Prediction (NWP), where the data format
standard is GRIB. GRIB was designed to offer high performance for I/O operations, since in
operational weather forecast, the time-to-solution is a critical process. However, the data format
used in climate modelling as an accepted standard is netCDF. In addition, EC-Earth needs to
compute expensive diagnostics using variables from both IFS and NEMO.

1.1 Motivation

As it has been explained, the sequential output of IFS is the scheme used in the IFS version of
EC-Earth. This was not a problem using the resolution required for operational experiments,
because the I/O did not represent a significant part in the total execution time.

However, we have recently started to perform very complex experiments in collaboration with
different institutions from Europe, under the Horizon 2020 (H2020) PRocess-based climate sIM-
ulation: AdVances in high-resolution modelling and European climate Risk Assessment (PRI-
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MAVERA) project [12]. This project aims to simulate using higher resolution and it requires
to produce a large number of variables. As a consequence, the community has experienced a
considerably slowdown in the execution time, not only due to the higher resolution of the com-
putational part, but also especially due to the I/O part, because it represents about 30% of the
total execution time.

This is one of the critical issues to be solved for the community, because it will be present in
new future experiments which will require similar PRIMAVERA configurations or even more
complex.

For this reason, it is necessary to solve this problem by identifying which are the present and
future community needs to use an efficient and functional I/O approach. The first need is to
write in netCDF data format instead of GRIB, like IFS currently does, because climate modelling
works with netCDF format. The second need is to produce netCDF files as requested by the
CMIP6 data request. The Coupled Model Intercomparison Project (CMIP) [13] is a standard
experimental protocol for studying the output of coupled Atmosphere-Ocean Global Circulation
Models (AOGCMs). The third need is the ability to perform online post-processing, which
means that the data to be output is processed along the simulation. Those three needs are very
important to avoid the costly current post-process that we have to perform. The fourth need,
from a computational point of view, is to find an efficient and scalable I/O approach able to
exploit parallel resources.

Additionally, the new complexity of Earth system models where different components interact
among them implies new needs where data produced by each component will not be indepen-
dently processed anymore. Since we currently compute some diagnostics using variables from
both IFS and NEMO, we will need a mechanism to concurrently compute them online for both
components along the simulation, avoiding to do it in the post-processing task.

In order to fulfill the aforementioned community needs, different I/O tools were studied, se-
lecting for this work the most suitable one. The XML Input/Output Server (XIOS) [14] is
an asynchronous MPI parallel I/O server that we chose to be integrated with IFS, and as a
consequence will be used in the future OpenIFS version that will substitute IFS in EC-Earth.
OpenIFS is a free licensed and simplified version of IFS.

In addition, since NEMO is already using XIOS for outputting data, the future version of EC-
Earth, which will use OpenIFS and NEMO, will be able to compute online diagnostics through
XIOS with variables from both components at the same time.

Therefore, the XIOS integration will fulfill all the community needs and will increase the com-
putational efficiency of IFS and will reduce the critical path by avoiding the post-processing
task. Figure 3 shows how the critical path will be improved by using XIOS for IFS, OpenIFS
and EC-Earth.
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Figure 3: Optimized critical path of a basic experiment with two tasks sequentially executed

1.2 Objectives

The main objective of this project is to improve the I/O performance of IFS to reduce the total
execution time and achieve a better computational efficiency. This is to get more throughput,
which means to write more data in less time.

We also set the objective of reducing the critical path by removing the post-processing devoted
to perform costly operations such as GRIB to netCDF data format conversion or diagnostics
computation.

In addition, we also have the objective to increase the usability of IFS by using an easier output
configuration file compared to the current approach.

In order to achieve the objectives, we identify the following tasks:

• Perform the state-of-the-art of I/O techniques used in HPC and ESM to identify the most
appropriate approach to be used by IFS.

• Develop an integration between IFS and XIOS.

• Do a performance analysis of the development to detect potential bottlenecks and use
proper optimization techniques to finally obtain an efficient integration.

1.3 Document organization

This document is organized as follows. In Section 2 we research about the current available
I/O schemes and discuss why we chose XIOS. We give an overview of IFS and XIOS in Section
3. We continue the document explaining the development done for the integration in Section
4. The next Section 5 is devoted to explain the performance analysis and optimization of
the development. The computational performance of the integration is evaluated in Section 6.
Finally, we conclude the work in Section 7.
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2 State-of-the-art

We have presented the motivation and objectives of this project, explaining why IFS needs a
new I/O scheme that fulfills the community requirements. In this section, we will review the
state-of-the-art of the I/O solutions used on HPC, especially in the area of ESM, focusing on
parallel I/O.

In Section 2.1 we give a general overview about what is I/O and how it works the sequential
I/O. Then, in Section 2.2 we explain what is parallel I/O and the different approaches that
we can use. We also explain some well-established I/O libraries in HPC, including MPI-IO,
Hierarchical Data Format (HDF) and netCDF. After that, we explain that there is a particular
type of parallel I/O that uses dedicated resources, which are called I/O servers. Finally, in
Section 2.4 we compare different I/O solutions and justify why we chose XIOS.

2.1 I/O overview

The action of reading and writing data, commonly known as Input/Output (I/O), is a basic and
essential process of almost all HPC applications to communicate with the outside world. Earth
system models have traditionally performed the I/O using sequential writing [9]. It is typically
done using the Portable Operating System Interface (POSIX) I/O Application Programming
Interface (API). Figure 4 shows the basic layers of the I/O stack involved for reading and
writing using POSIX I/O. Functions such as open, write or close, directly work with files.

In parallel applications, the sequential I/O implies to send all data to the master process, which
performs the sequential write. In the meantime, the rest of the processes wait until this process
is completed.

Figure 4: Sequential I/O stack traditionally used by HPC applications (Reproduced from [15])

Sequential I/O was fine several years ago because the amount of data was not too high and
storage systems were able to deal with it. However, as we explained in the introduction Section
1, the increase of computing power enables the capacity to execute more accurate simulations,
which leads to generate more output data. In addition, the path to exascale will accentuate this
problem. This means that current sequential I/O schemes are not useful anymore, even if they
use optimized techniques, because it will not scale. Therefore, applications need to use parallel
I/O.

A good example of an efficient I/O optimization changing the sequential scheme to a parallel
one is in the Community Atmosphere Model (CAM) [16]. They published this work in 2008,
10 years ago, which indicates that they were already aware of the inherent problems of the
sequential I/O for parallel applications. This work proved that the transition from sequential
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to parallel I/O gives really good improvements in terms of computational performance.

However, the need of more computational power led to use much more processors in CAM, and
for this reason, the parallel I/O scheme introduced in 2008, was replaced some years ago by the
Parallel I/O library (PIO).

2.2 Parallel I/O

In order to increase the scalability of Earth system models, the current feasible approach is to
make the I/O scalable as well, that is, use parallel I/O.

Parallel I/O is the ability to perform multiple input/output operations at the same time, such
as simultaneously writing several files or concurrently writing into different regions of the same
file from different processes.

Applying this concept to Earth system models [17], the main idea is to involve all the processes
of a model so that they balance or re-distribute the data to be output from subdomains in a
way that writing is efficiently performed and as fast as possible.

To this aim, there are two strategies commonly adopted [18]:

• Writing multiple files: data is output among several files (as many as MPI tasks). This
means that each MPI task is responsible of its subdomain. The main advantage is that is
very scalable, although in some file systems the creation of a lot of files can be a problem.
In addition, post-processing is needed to joint files. On the left side of Figure 5 there is a
scheme showing how each process writes its own file. As said, this can be done using the
POSIX I/O API, or using MPI-IO point-to-point operations (explained later on in this
section).

• Writing one file: data is output into one single file. In this case, no post-processing for
joining files is needed, but the scalability is more difficult to achieve, which depends on the
implementation and the number of MPI processes used, mainly due to overheads caused
by conflicted I/O operations from all processes. On the right side of Figure 5 there is a
scheme showing how all processes write into a shared file using MPI-IO collective opera-
tions.

Figure 5: Common writing strategies: on the left side the strategy for writing multiple files and
on the right side the strategy for writing one file (Reproduced from [18])

Nevertheless, the two previous strategies could not be suitable to scale models using a huge
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number of processes. Therefore, a feasible solution could be to use an intermediate solution.
That is, writing a file for a subset of processes. Figure 6 shows a scheme of this intermediate
strategy.

Figure 6: Intermediate I/O strategy: processes are grouped in subsets to share a file (Reproduced
from [18])

Since POSIX I/O can not offer the possibility to implement parallel I/O, it is necessary to use a
library able to offer this feature. In this case, the most popular one is MPI-IO. It is not easy to
use and as a consequence has not been adopted by many applications. However, it is indirectly
the most used parallel I/O library, because many other user-friendly high-level libraries are built
on top of MPI-IO, such as netCDF or HDF. Since these high-level libraries are easy to use, they
are commonly used for Earth system models.

This new approach to perform I/O changes the I/O stack by adding two new layers [19] as can
be seen in Figure 7. In this new stack, applications use high-level libraries that usually offer a
powerful API for efficiently organizing complex data objects with the corresponding metadata.
At the same time, high-level libraries use I/O middlewares to efficiently store data into storage
systems through parallel file systems.

Figure 7: Parallel I/O stack adopted by HPC applications (Reproduced from [15])

In the following points we review some well-established I/O libraries in HPC applications [20][21],
i.e., MPI-IO for the I/O middleware layer, and HDF5 and netCDF for the high-level I/O library
layer:

• MPI-IO: the MPI 2.0 standard [22][23] was extended by adding specific parallel I/O func-
tionality. Since POSIX was designed for serial I/O, MPI-IO [15] aims to offer a high-level
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interface to split the reading and writing of data across several processes taking advantage
of MPI messages. It is possible to use both individual or collective I/O operations. The
interface syntax is based on MPI subroutines.
Currently, many different I/O libraries are built upon MPI-IO, because it offers a good
performance and deals with low-level implementation details. The performance can be
tuned by setting a lot of different parameters because each HPC machine has its own
hardware and software configuration.

• HDF5: the Hierarchical Data Format (HDF) [24] is a set of tools, libraries and file formats
that are used to manage and store large amounts of data. It can also represent very
complex data objects and a wide variety of metadata. In addition, it is able to store
multi-dimensional arrays. HDF5 is the latest version.

• NetCDF: the Network Common Data Format (netCDF) [25][26] is a set of software libraries
and self-describing, machine-independent data formats that support the creation, access,
and sharing of array-oriented scientific data.
The latest version is netCDF4 which can use HDF5 file format for storing data, but it
is also compatible with the previous (and first) version of netCDF, which is netCDF3.
Regarding the parallel use of netCDF, which by default uses serial writing, there are two
mechanisms:

– For writing in netCDF3 file format, it is necessary to use Parallel-netCDF (PnetCDF),
built upon MPI-IO.

– For writing in netCDF4 file format, it is necessary to use the parallel functionality of
HDF5, built upon MPI-IO.

2.3 I/O servers

In order to keep improving the performance and the scalability of Earth System models, it is
possible to go one step further and use some nodes exclusively dedicated to I/O. The model
processes do not need to deal with the I/O, they only have to send the data to I/O nodes. This
has the advantage that they can continue with the simulation without spending time outputting
data.

This approach is known as I/O servers [27], which are the responsible of writing data into the
storage system in order to theoretically hide the disks latency from the model processes and use
as efficiently as possible the network bandwidth by using techniques such as aggregation.

There are different strategies to send data from model processes to I/O servers. Communication
is typically done through MPI, by using synchronous or asynchronous operations. Furthermore,
I/O servers can have different communication patterns. One I/O server could collect a subset
of subdomains, i.e., each I/O server aggregates local data from a subset of subdomains for all
variables. Or one I/O server could collect a subset of global variables, i.e., each I/O server
aggregates local data from all subdomains (global domain) for a subset of variables.

I/O servers need to be configured by specifying many different parameters: how to write data,
the data format, which I/O method internally use, the number of fields to be written and their
dimensions, the data decomposition used in the model, etc. This can be hardcoded, done using
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an external configuration file which is parsed at runtime, and/or using an API, because some
variables are dynamically set up on the model during runtime.

In addition, some servers can have extra functionality such as online post-processing, data
conversion or data compression. If users want to use it, they simply have to set up the proper
parameters in the configuration file (or through the API).

Figure 8 shows a scheme about I/O servers, where there are the model processes communicated
with I/O servers. I/O servers, before writing data into the storage system, can perform online
post-processing while model processes continue with the simulation.

Figure 8: Overview of an I/O server. On the left there are the model processes which send data
to the I/O servers (orange). Then, while models processes keep running the simulation, I/O
servers write data into the storage system

There are several I/O servers available in the literature. They can be generic to any kind of
HPC application, such as ADaptable I/O System (ADIOS) [28] and Damaris [29], but also they
can be designed specifically for ESM, such as CDI with parallel I/O (CDI-pio) [30], Climate
Fast Input/Output (CFIO) [31] and XIOS [32].

2.4 Discussion: comparison and choice

In the motivation Section 1.1 of this project, we have clearly explained the specific needs that
we have, so all of them should be fulfilled by one I/O tool. We have reviewed several options in
the literature that could potentially be integrated with IFS to solve the I/O bottleneck.

If we focus on the execution time of the simulation, as well as only outputting data, we think
that it is not clear which could be the fastest I/O server, because the respective authors report
good performance, and I/O is something very machine-dependent and even context-dependent.
For example, you could be running your scalability tests in a moment where there are other
users that are executing I/O-intense applications. This would speed down your tests.

Nevertheless, there are other aspects that influence our choice. In both IFS standalone and IFS
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within EC-Earth the post-processing phase is needed, so if we can move this work to the I/O
servers we can save a lot of resources and time. In the current critical path of an experiment,
after the simulation we have to write temporary files that will be read in the post-processing
phase to be then written again once they are processed. With online post-processing, after the
simulation we would be able to directly write the definitive files. I/O servers such as CDI-pio
and CFIO do not offer online post-processing. In ADIOS and Damaris, there is the possibility
to add a plugin to transform data, but in case of being possible, it would be needed a lot of
extra work to add those post-processing functionality that in XIOS is already available.

Furthermore, EC-Earth contributes with climate simulations to the CMIP project, where data
organization must follow an strict standard that XIOS is aware. Despite the fact that the other
I/O servers can write in netCDF, they do not take into account the CMIP standard.

Last but not least, as we exposed in the introduction, in EC-Earth we have to calculate diag-
nostics that are derived using fields from both IFS and NEMO. Since NEMO is already using
XIOS, if IFS was using XIOS as well, we would be able to calculate these diagnostics online
instead of doing it at the post-processing phase. ADIOS may not support online diagnostics
using variables from more than one component. However, if it was possible, we would have much
more work, because it would be needed to integrate ADIOS with IFS and NEMO.

Therefore, according to what we need and what I/O servers offer, it is quite irrefutable that we
have to choose XIOS.
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3 Context

In this section we will explain the two main components used in this project. In Section 3.1 we
give an overview of the scientific part of IFS, as well as an explanation about the computational
part, including the decomposition and parallelization of local domains, the data structures and
the two available output schemes. Then, in Section 3.2 we explain the main features of XIOS
and how it is used. We give an overview of all the XIOS elements: axis, domain, grid, field, file,
filters and performance variables.

3.1 IFS description

We will mainly focus on the technical and computational part of IFS, and only briefly describing
the scientific part.

3.1.1 Brief overview

IFS [10] [33] [34] [35] is an operational global meteorological forecasting model and data assimi-
lation system developed and maintained by ECMWF. It is a spectral model that discretises the
Euler equations of motion, resolving flow features to approximately 4-6 grid-cells at the nominal
resolution. The subgrid-scale features and unresolved processes are described by atmospheric
physics parametrizations. There are many different unresolved physical processes in the atmo-
sphere, such as radiation, clouds and subgrid turbulent motions. In Figure 9 there is an overview
of the different physical processes.

Figure 9: Overview of the unresolved physical processes in the atmosphere (Reproduced from
[34])

The dynamical core of IFS is hydrostatic, two-time-level, semi-implicit, semi-Lagrangian and
applies spectral transforms between grid-point space (where the physical parametrizations and
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advection are calculated) and spectral space. In the vertical the model is discretised using a
finite-element scheme. A reduced Gaussian grid is used in the horizontal.

3.1.2 Decomposition and parallelization of local domains

IFS is an MPI+Open Multi-Processing (OpenMP) hybrid model that uses a sophisticated data
structure to be efficiently parallelized. Code snippet 1 shows the current data structure used in
IFS. The idea of the parallelization applied is that fields are processed using a blocking technique,
where the first NPROMA dimension can be adjusted by the user at run-time to fit the memory
cache. Depending on the size of NPROMA, there will be more or less NGPBLKS blocks. The
2D i-j horizontal dimension is transformed using these two new dimensions.

1 REAL Model Data(1:NPROMA, 1:NFLEVG, 1:NFIELDS, 1:NGPBLKS)

Code snippet 1: Data structure used in IFS

The other two dimensions remain the same, which are NFLEVG (or vertical dimension) and
NFIELDS (the number of fields). However, note that these two dimensions are not in the outter
dimensions of the array. This implies that for a given NGPBLKS block, all fields are processed.
Code snippet 2 shows the OpenMP parallelization applied in IFS for its data arrays. In addi-
tion, Figure 10 shows the NPROMA blocking used in IFS.

1 !$OMP DO SCHEDULE(STATIC)
2 DO iblock = 1, NGPBLKS
3 DO ifld = 1, NFIELDS
4 DO ilvl = 1, NFLEVG
5 DO i = 1, NPROMA
6 Model Data(i, ilvl, ifld, iblock)
7 END DO
8 END DO
9 END DO

10 END DO
11 !$OMP END DO

Code snippet 2: OpenMP parallelization used in IFS
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Figure 10: NPROMA blocking strategy used for IFS data arrays. For each NPROMA block,
IFS iterates over all elements (NPROMA) of each vertical level (NFLEVG) and for each field
(NFIELDS)

3.1.3 Data structures

In IFS there are some major data structures [36] to store all data for spectral and grid-point
fields. For spectral data, IFS uses the YOMSP module, in which the arrays SPA3 and SPA2
hold the 3D and 2D state variable spectral fields respectively.

Nevertheless, we will focus on grid-point fields. There are two core data-structures: GMV and
GFL.

The GMV structure contains prognostic variables involved in the semi-implicit: wind compo-
nents, temperature, surface pressure, vorticity, etc. All GMV fields have a spectral representa-
tion.

This is quite a fixed structure which is supposed to have almost no modification. Data arrays
are accessed using pointers, as many as GMV fields. In addition, there can be 3D and 2D fields:
the 3D ones are stored in the GMV array and the 2D ones in the GMVS array. GMV fields do
not have attributes.

On the other hand, the GFL structure contains the rest of variables: specific humidity, snow,
rain, ozone, etc. Unlike GMV, GFL structure is much more flexible and can be easily extended
with additional fields. It only contains 3D grid-points fields that may have a spectral represen-
tation. Data is stored in array GFL.

One of the main characteristics are attributes. They are used to govern the behaviour of the
individual fields of the GFL structure. The idea is to loop over all fields in GFL and perform
the action defined by the setting of the appropriate attribute. However, it is still possible to
treat fields separately through individual pointers.
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3.1.4 IFS output schemes

IFS has two different output schemes, one better than the other, since one was replaced by the
other to improve the throughput:

• Sequential output: this is the slowest one, since the output is sequentially performed by
the master process. It performs a gather of all subdomains from the rest of processes,
to build the global domain and write it into the storage system. This type of output is
not scalable, so it has an important negative impact on the performance of the model.
Although this output scheme is contained in all versions of IFS, it is never used except
in OpenIFS and EC-Earth. As a consequence, in huge simulations of EC-Earth we are
suffering a considerable slowdown.

• MF I/O server: the Météo-France I/O server was introduced in IFS to avoid the low
performance of the sequential output scheme. It uses the concept of dedicated processes
as servers to perform the I/O, such as XIOS. Although it offers really good throughput,
there are some issues: it does not perform post-processing (done by FullPos), it writes
data using GRIB format and it is not available in OpenIFS (future version for EC-Earth).

3.2 XIOS description

3.2.1 Overview

The XML Input/Output Server (XIOS) [14][27][37][38][39][40] is an asynchronous MPI parallel
I/O server that is used by Earth system models to avoid contention in the I/O. It focuses
on offering high performance to achieve very high scalability with support for high-resolution
output. XIOS is developed by the IPSL with an Open Source CEA CNRS INRIA Logiciel Libre
(CeCILL) License. It has the following features:

• Usability in the definition and management of the I/O with a user-friendly XML configu-
ration file.

• Avoid the I/O performance issue with dedicated parallel and asynchronous servers.

• Post-processing of fields can be performed online using an internal parallel workflow and
dataflow.

XIOS is especially targeted to Earth system models with these characteristics:

• Coupled models

• Long simulations

• A lot of data is generated

• Contribute to the CMIP project

16 Technical Memorandum No. 825



Computational aspects and performance evaluation of the IFS-XIOS integration

Interestingly, all the previous points (except the last one that depends on the purpose of the
model) are inherent in climate models, such as EC-Earth. They are made of several coupled
components that perform really long simulations. This implies to generate a lot of data that in
some cases is used to contribute to the CMIP project.

In Figure 11 there is an overview of the schematic architecture used in XIOS. Each one of the
model processes run its own XIOS client using the XIOS API. This is part of the client side,
i.e., it is run on the model processes. Then, XIOS clients communicate data to XIOS servers
using asynchronous MPI messages. They are run on independent nodes with regard to the
model nodes. This is the server side, which uses its own MPI communicator to perform online
post-processing over the received data. After that, XIOS servers can write post-processed data
into the storage system using two different strategies: one single file or multiple files (one per
XIOS server). The whole configuration is described in the iodef.xml file. In Figure 11 is used
the one single file strategy.

Figure 11: Overview of the XIOS architecture. Model processes are communicated with the XIOS
servers using asynchronous MPI messages. All the framework is configured using an XML file
(Reproduced from [14])

Furthermore, although Figure 11 shows an XIOS configuration using the server mode (dedicated
I/O processes), it is also possible to use the client mode. In client mode, XIOS servers are not
used and as a consequence, XIOS clients are the responsible of doing online post-processing
and writing data into the storage system, either using one single file or multiple files. This
implies that model processes cannot continue with the simulation until they have finished post-
processing and data writing.

Regarding the aggregation strategy used to send data from clients to servers, XIOS re-distributes
clients’ data between servers as evenly as possible to use an optimal balance. Figure 12 illus-
trates an small example of 6 clients and 3 servers, where data is re-distributed so that servers
have a proportional amount of data.
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Figure 12: Example of XIOS data distribution between clients and servers (Reproduced from
[14])

3.2.2 Concept

The philosophy of XIOS is really simple: at each time step the model can expose its data to
XIOS using just one subroutine. But first, it is needed to update the calendar of XIOS to
inform which is the current time step of the model. This is done using the subroutine of the
Code snippet 3.

1 CALL xios update timestep(ts)

Code snippet 3: XIOS subroutine to update the calendar

Then it is possible to use the respective subroutines to read (Code snippet 4) or write (Code
snippet 5) data. They must be called for each one of the model variables or fields that we want
to read or write.

1 CALL xios recv field(”field id”,field)

Code snippet 4: XIOS subroutine to read a field

1 CALL xios send field(”field id”, field out)

Code snippet 5: XIOS subroutine to write a field

Both subroutines have two arguments, the first one is the identifier of the variable or field and
the second one is the data array, which can have different dimensions depending on how was
defined.

Since the approach of XIOS is to call these two subroutines at each time step, there could be
some situations where this is not necessary. For example, if a field is disabled in the XML con-
figuration file so that it will not be output, we could avoid to send data that will not be used.
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The Code snippet 6 shows how to use the function that queries if a field is used in the simulation.

1 IF (xios field is active(”field id”)) THEN
2 CALL xios send field(”field id”, field out)
3 ENDIF

Code snippet 6: XIOS subroutine to query if a field is active

There is another similar situation: if a field is not written, but it is used to calculate a diagnostic.
In this case if the sampling frequency to post-process the diagnostic is lower than the time step
frequency, in some time steps the data of the field is not needed. Therefore, we could avoid
to send data that will not be used. We can use the optional second argument of the previous
function setting it up to true. The function of the Code snippet 7 queries if a field is active or
not in the current time step.

1 xios field is active(”field id”, .true.)

Code snippet 7: XIOS subroutine to query if a field is active in the current time step

Alternatively, we can set the field attribute check if active to true so that XIOS internally will
check if a field is active before sending any data. Code snippet 8 shows how to do it. It is
equivalent to use the function of the Code snippet 7.

1 <field definition>
2 <field id=”field id” grid ref=”grid id” operation=”instant” check if active=”true” />
3 </field definition>

Code snippet 8: XML definition to output a field if active in the current time step

Finally, one important aspect of the XIOS philosophy is to make the initial configuration as easy
as possible and posterior re-configurations to be as quick as possible by avoiding re-compilations.
This is simply achieved by changing parameters in the XML configuration file. Therefore, there
are two types of setup that are complemented:

• Static setup through the XML file. It is parsed at runtime at the beginning of the exe-
cution to modify the XIOS internal workflow and the user output definition. It follows a
hierarchical approach using the inheritance concept.

• Dynamic setup through the Fortran API. It is used to modify the XML definition, or
extend it. For example, the grid setup should be done dynamically since subdomain
decomposition is different according to the number of MPI tasks and is done at model
runtime.

The key point is that if the integration of XIOS is properly done, users only need to make use
of the static setup. The dynamic setup is only needed in particular cases, probably for model
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developers. For example, the model internally computes a new diagnostic that should be output
through XIOS. It would be needed to make some easy changes to send the new diagnostic data
array to XIOS.

3.2.3 Initialization

There are two steps to initialize XIOS:

• XIOS initialization: in this step XIOS is initialized, the XML is parsed and MPI may be
initialized (if it has not already been done). The MPI COMM WORLD communicator
is shared between the model and XIOS, so it is returned a local communicator to be
potentially used by the model. This is done with the subroutine of the Code snippet 9.

• Context initialization: it performs the configuration of the context associated with ”con-
text id” defined in the XML file. In addition, it opens the scope where to put setup
subroutines: geometry, calendar, fields, etc. This is done with the subroutine of the Code
snippet 10.

1 CALL xios initialize(”code id”, return comm=communicator)

Code snippet 9: Subroutine to initialize XIOS

1 CALL xios context initialize(”context id”,communicator)

Code snippet 10: Subroutine to initialize the XIOS context

3.2.4 Finalization

The two steps of the initialization are inversely undone:

• Context finalization: close contexts once they are processed. This is done with the sub-
routine of the Code snippet 11.

• XIOS finalization: close servers, opened files and generate the performance report to know
if we are using the optimal number of servers. It also finalizes MPI if it was initialized by
XIOS. This is done with the subroutine of the Code snippet 12.

1 CALL xios context finalize

Code snippet 11: Subroutine to finalize the XIOS context
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1 CALL xios finalize

Code snippet 12: Subroutine to finalize XIOS

3.2.5 Grid definition

It is necessary to set up on XIOS the grid that is exactly used by the model and the data
decomposition for each MPI process as well.

XIOS is able to use grids of any dimension: 0D, 1D, 2D, 3D, etc. The most commonly used is a
3D grid which is made of a 1D-vertical axis and a 2D-horizontal domain. Axis and domain are
the two elements used in XIOS to define any kind of grid.

Axes are generally used to describe the vertical direction of a grid. There are several variables
to describe how data is stored in memory and mapped into the grid. Figure 13 shows the basic
variables of the axis element.

Figure 13: Basic variables to describe an axis (Reproduced from [14])

Domains describe the type of horizontal layer that maps the Earth’s surface. In XIOS there are
four different domains available:

• Regular Cartesian

• Curvilinear

• Reduced Gaussian

• Unstructured

There is an example of a reduced Gaussian domain in Figure 14. As mentioned, this type of
domain is the new one used in IFS.

Technical Memorandum No. 825 21



Computational aspects and performance evaluation of the IFS-XIOS integration

Figure 14: Example of a reduced Gaussian domain (Reproduced from [14])

As in the axes, domains also have some basic variables used to describe the geometry of the
global domain and local subdomains. Figure 15 shows the basic variables, which for describing
a regular Cartesian domain would be enough, but for a reduced Gaussian one, we would need
to set up some different and a bit more difficult variables. This will be explained in the devel-
opment Section 4.

Figure 15: Basic variables to describe the global domain and a subdomain (Reproduced from
[14])
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3.2.6 Fields

Fields are typically declared through the XML file as it shows Code snippet 13.

1 <field definition>
2 <field id=”temp” grid ref=”grid 3d” />
3 <field id=”precip” grid ref=”grid 3d” />
4 <field id=”pressure” domain ref=”domain 2d” />
5 </field definition>

Code snippet 13: Example of an XML field definition

Data of fields is distributed according to the underlying grid description. They have several
attributes that will be associated in the output file: name, standard name, unit, etc. In addition,
there are other configurable parameters such as the sampling frequency, the compression level,
etc.

3.2.7 Files

The declaration of files is similar to the fields one, also using the XML file. In Code snippet 14
there is one file defined with the name ”daily output”, containing several fields with different
online post-processing options.

1 <file definition>
2 <file name=”daily output” freq output=”1d”>
3 <field field group ref=”fields 3d” operation=”average” />
4 <field group operation=”instant”>
5 <field field ref=”temp” name=”temp inst” />
6 <field field ref=”pressure” name=”pressure inst” />
7 </field group>
8 <field field ref=”pressure” operation=”average” />
9 </file>

10 </file definition>

Code snippet 14: Example of an XML file definition

There are some configurable parameters: write one or multiple files, compression, netCDF
version, etc.

3.2.8 Filters

An essential part of XIOS for performing online post-processing are filters. Depending on the
type of post-processing operations, there are several different filters that are applied to fields
during runtime. Internally, filters are applied to data fluxes with a timestamp, which represent
fields. Figure 16 shows a workflow with its respective fluxes and filters to generate diagnostics
to be written into files. These workflows are internally used by XIOS, users do not have to deal
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with them.

Figure 16: Example of a workflow applying filters to fields

There are three types of filters:

• Arithmetic filters: they combine fluxes of the same timestamp together applying arithmetic
operations. Fluxes must be represented with the same grid. Code snippet 15 shows how
to represent the two following arithmetic operations using the XML:

C = A+B

A∗B

D = e−C∗D

3
• Time integration filters: they integrate a flux over a period of time. There are different

types of operations: once, instant, maximum, minimum, average and accumulate. It is
possible to chain time filters with ”@”. Code snippet 16 shows an example.

• Spatial filters: they are used to change the geometry of the fields. There are different
parallel operations:

– Data extraction: zooming, slicing, etc
– Global or spatial reduction: mean, max, min, etc
– Horizontal interpolation
– Polynomial vertical interpolation
– Pressure levels interpolation
– Connectivity discovery
– ...

Code snippet 17 shows a code to interpolate a regular domain to an unstructured domain.

1 <field id=”A” />
2 <field id=”B” />
3 <field id=”C” > (A + B)/(A∗B) </field>
4 <field id=”D” > exp(−C∗this)/3 </field>

Code snippet 15: Example of an arithmetic filter
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1 <field id=”temp” operation=”average” />
2 <field id=”temp min” field ref=”temp” operation=”minimum” />
3 <field id=”temp max” field ref=”temp” operation=”maximum” />
4
5 <file name=”monthly output” freq output=”1mo” >
6 <field name=”ave daily min” operation=”average” freq op=”1d”> @temp min </field>
7 <field name=”ave daily max” operation=”average” freq op=”1d”> @temp max </field>
8 <field name=”min daily ave” operation=”minimum” freq op=”1d”> @temp </field>
9 <field name=”max daily ave” operation=”maximum” freq op=”1d”> @temp </field>

10 </file>

Code snippet 16: Example of a time integration filter

1 <field id=”temp” grid ref=”grid regular” />
2 <field id=”new temp” field ref=”temp” grid ref=”grid unstructured” />
3
4 <axis id=”vert axis” n glo=”100” />
5 <domain id=”regular” ni glo=”360” nj glo=”180” type=”rectilinear” />
6 <domain id=”unstructured” ni glo=”10000” type=”unstructured” />
7
8 <grid id=”grid regular”>
9 <domain domain ref=”regular” />

10 <axis axis ref=”vert axis” />
11 </grid>
12
13 <grid id=”grid unstructured”>
14 <domain domain ref=”unstructured”>
15 <interpolate domain />
16 </domain>
17 <axis axis ref=”vert axis” />
18 </grid>

Code snippet 17: Example of a spatial filter

3.2.9 Performance tuning

At the end of the execution, XIOS generates individual performance reports for all clients and
servers to know details about memory consumption and different execution times (total, waiting,
ratio, etc).

There are different options to tune the performance of XIOS:

• Test the two possible run modes: attached mode or server mode. Theoretically, server
mode should give more performance, but additional computational resources are needed.

• Test the two possible writing modes: single file or multiple files. Theoretically, multiple
files should give more performance due to higher scalability, but post-processing to merge
all files is needed.

• Test different values for some memory buffer parameters.
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3.2.10 CMIP

Some climate models are tuned to perform simulations that will contribute to the CMIP project.
The Coupled Model Intercomparison Project (CMIP) [13][41][42] is a standard experimental
protocol for studying the output of coupled AOGCMs. The ongoing version is the sixth, known
as CMIP6. One of the requisites is that data must follow a very strict standard, so almost
all models need to post-process data to fulfill the standard. This process is known as Climate
Model Output Rewriter (CMOR) post-processing or CMORization.

As we mentioned, XIOS is able to ideally produce netCDF files according to the CMIP6 data
request, being ready to be distributed and published. However, this is not automatically done,
so a minimum user effort is needed to write the proper XML configuration file.

This XIOS feature avoids (or at least minimize) to perform the costly and slow CMORization.
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4 Development of the IFS-XIOS integration

4.1 Overview

In previous Section 3 we have given an explanation of both IFS and XIOS to understand the
details of their integration.

Figure 17 shows the IFS-XIOS integration scheme implemented and illustrates how the different
parts of both components are interconnected. In green, it is shown the IFS processes which
execute the client side of XIOS through its API. They send data using asynchronous MPI
communications to XIOS servers. XIOS servers are run on server side, which are represented in
orange. Finally, servers send data to the storage system (in purple) through system calls. Both
XIOS clients and servers are configured with the iodef.xml file.

Furthermore, this figure also shows that post-processing is performed in both clients and servers.
This is because depending on the type of post-processing, some operations are performed on
client side, such as horizontal interpolations, and some other on server side, such as netCDF
compression.

There is a pair of scripts, model and run parallel, that are in charge of executing the whole inte-
grated system. In particular, run parallel executes both binaries in Multiple-Program Multiple-
Data (MPMD) mode using aprun.
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Figure 17: Scheme of the IFS-XIOS integration. It overviews how the different parts are inter-
connected.

If we focus on the structure of our code, we have followed the coding standards of IFS. They
have different prefixes for file names, where in general ”yom” is used for variables, ”su” is used
for setup routines and ”c” is used for control routines. We have implemented three different
files:

• yomxios.F90 : it contains variables related to XIOS. For example the context handle, time
step, data arrays, etc.

• suxios.F90 : it contains all the routines needed to initialize XIOS from IFS. There are three
public subroutines: suxios ini, suxios fin and suxios ctxt.

• cxios.F90 : it contains one public routine called ifs xios send fields to send data.

The development has been designed so that it is really simple to use and maintain. It is possible
by calling the previous mentioned four public subroutines:

• suxios ini: it is called at the beginning of IFS because MPI is initialized by XIOS.

• suxios fin: it is called at the end of IFS when MPI is no needed anymore, because XIOS
finalizes MPI.
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• suxios ctxt: it is called during the IFS setup. It performs the configuration of XIOS with
the parameters of IFS.

• ifs xios send fields: it is called at the end of each time step to send fields to XIOS.

The ifs xios send fields subroutine is internally designed so that it has three different parts or
steps. This three steps are: update calendar, NPROMA blocks gather and send fields. If IFS
is running an output time step, all three steps will be sequentially executed; otherwise if IFS is
running a non-output time step, only the update calendar step will be executed.

Figure 18 shows how these three steps are executed at the end of an output time step. For
illustrative purposes, in this example all time steps perform output.

Figure 18: Output scheme developed for IFS: all three steps, update calendar, NPROMA blocks
gather and send fields are sequentially executed at the end of and output time step

In the following sections we will explain more in detail how the previous files are implemented
and the changes in the scripts. In Section 4.2 we explain the necessary steps to perform the
XIOS setup from IFS, i.e., pass the IFS parameters that XIOS requests. It includes the design
of both yomxios.F90 and suxios.F90 files. Then, in Section 4.3 we explain how we implemented
the grid-point fields transfer. This is basically the design of the cxios.F90 file. Finally, in Section
4.4 we explain the necessary changes in the IFS environment, including model and run parallel
scripts, to be able to run the whole integrated system.

4.2 XIOS setup

In order to set up XIOS to be fully operational, we have to follow a series of steps. First of all,
XIOS must be initialized, which internally initializes MPI. Then, we have to setup the whole
context. This part includes the calendar, which is very important to have both IFS and XIOS
fully coordinated when the simulation progresses along the time. It also includes the geometry of
IFS. This is the definition of the IFS grid, including the horizontal domain and the vertical axis.
Thus, XIOS knows how received data from different independent processes has to be placed over
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the world. Finally, once the simulation finishes, we have to finalize XIOS, which internally also
finalizes MPI.

4.2.1 Data and variables module

According to our development structure, we have a module in yomxios.F90 that contains vari-
ables related to the XIOS context, calendar variables, identifiers for the axes and domains, and
three data arrays that are used to send fields to XIOS. Code snippet 18 shows the yomxios
module.

1 MODULE yomxios
2
3 USE PARKIND1, ONLY : JPIM, JPRB
4 USE xios
5
6 IMPLICIT NONE
7
8 SAVE
9

10 ! XIOS context
11 TYPE(xios context) :: context handle
12 CHARACTER(len=3) :: model name = ”ifs”
13 CHARACTER(len=3) :: ifs context = ”ifs”
14
15 ! Calendar management
16 TYPE(xios date) :: time origin
17 TYPE(xios date) :: start date
18 TYPE(xios duration) :: time step
19
20 ! Axes definition
21 CHARACTER(len=12) :: model axis name = ”model levels”
22
23 ! Domains definition
24 CHARACTER(len=16) :: gaussian domain name=”reduced Gaussian”
25
26 ! Arrays to gather NPROMA blocks and send fields to XIOS
27 REAL(KIND=JPRB), ALLOCATABLE :: xios gmv(:,:), xios gmvs(:), xios gfl(:,:)
28
29 END MODULE yomxios

Code snippet 18: Overview of the data and variables module

4.2.2 Initialization

The first step is to initialize XIOS and MPI. It is possible to initialize MPI through IFS or
XIOS. According to the XIOS documentation, they recommend to initialize it through XIOS.
This means that we have to ensure that IFS does not call MPI Init.

As mentioned, XIOS will use the MPI COMM WORLD communicator for both components, it
will use its own communicator, and it will return a local communicator to be used by IFS.

IFS is already prepared to work with MPI COMM WORLD or with a provided local communi-
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cator. This avoided us to adapt IFS to support provided communicators.

The mechanism to change the IFS communicator is through two variables: LMPLUSERCOMM
and MPLUSERCOMM. Code snippet 19 shows how to do it. Setting up LMPLUSERCOMM
to true, we are specifying to use a provided communicator, which will be provided with the
MPLUSERCOMM. When we initialize XIOS, the subroutine xios initialize returns a local com-
municator.

1 ! Enabling the usage of MPLUSERCOMM communicator, rather than MPI COMM WORLD
2 LMPLUSERCOMM = .TRUE.
3
4 ! Initialization of XIOS and definition of the MPLUSERCOMM communicator to be used by IFS
5 CALL xios initialize(model name,return comm=MPLUSERCOMM)

Code snippet 19: Mechanism to change IFS communicators

This code is part of the public suxios ini subroutine.

4.2.3 Finalization

After the simulation, it is needed to finalize XIOS and MPI. Code snippet 20 shows how to do it.
First of all, we deallocate some arrays that are used for sending fields to XIOS (it is explained
in Section 4.3).

Then, we have to call xios context finalize and xios finalize subroutines to finalize XIOS and
MPI. Since in the initialization we specified to IFS to use a provided communicator, it will not
call MPI Finalize, which is called by XIOS.

1 ! Deallocating XIOS arrays
2 DEALLOCATE(xios gmv)
3 DEALLOCATE(xios gmvs)
4 DEALLOCATE(xios gfl)
5
6 ! Finalization of XIOS context
7 CALL xios context finalize()
8
9 ! Finalization of XIOS and MPI

10 CALL xios finalize()

Code snippet 20: MPI and XIOS finalization

This code is part of the public suxios fin subroutine.

4.2.4 Context

One important step is the XIOS context setup. Code snippet 21 shows how to perform the
setup. There are three first subroutines to start the IFS context definition scope, which is closed
using the xios close context definition. It contains three main private subroutines:
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• ifs xios set calendar : it is used to inform XIOS which type of calendar uses IFS, the start
date of the simulation and the duration of the time step. Section 4.2.5 explains how it is
implemented.

• ifs xios set axis and ifs xios set domain: both subroutines are used to set up the geometry
of the model. It is essential to inform XIOS about the distribution of each one of the grid-
points over the Earth, as well as how they are distributed between all IFS processes. Thus,
XIOS can output valid data, where each grid-point has a longitude and a latitude over the
Earth’s surface. Section 4.2.6 explains how they are implemented.

After the context definition close, we allocate some arrays used to send fields to XIOS (the same
arrays that we deallocated in Section 4.2.3, i.e., in finalization).

1 ! Context initialization
2 CALL xios context initialize(ifs context, MPLUSERCOMM)
3 CALL xios get handle(ifs context, context handle)
4 CALL xios set current context(context handle)
5
6 ! Date setting
7 CALL ifs xios set calendar
8
9 ! Definition of axes

10 CALL ifs xios set axis(YDGEOMETRY)
11
12 ! Definition of domains
13 CALL ifs xios set domain(YDGEOMETRY)
14
15 ! Close context definition
16 CALL xios close context definition()
17
18 ! Allocating XIOS arrays
19 ALLOCATE(xios gmv(YDGEOMETRY%YRGEM%NGPTOT,YDGEOMETRY%YRDIMV%NFLEVG)

↪→ )
20 ALLOCATE(xios gmvs(YDGEOMETRY%YRGEM%NGPTOT))
21 ALLOCATE(xios gfl(YDGEOMETRY%YRGEM%NGPTOT,YDGEOMETRY%YRDIMV%NFLEVG))

Code snippet 21: Needed calls to set up the XIOS context

This code is part of the public suxios ctxt subroutine.

4.2.5 Calendar

XIOS needs to know the type of calendar that IFS is using, in this case the Gregorian one. It
is set up calling xios define calendar. Then, we set up the time origin and the start date using
xios set time origin and xios set start date subroutines respectively. In this case, we use the
same date and time for both. IFS stores the initial date using format AAAAMMDD in variable
NINDAT, and the initial time in seconds in variable NSSSSS.

Finally, the last parameter to be set up is the time step that IFS is using. IFS stores the time
step in a variable called TSTEP, and it is passed to XIOS using the xios set timestep subroutine.
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Code snippet 22 shows how the calendar setup is done.

1 INTEGER(KIND=JPIM) :: year, month, day, hours, minutes, seconds
2
3 year = NINDAT/10000
4 month = MOD(NINDAT/100, 100)
5 day = MOD(NINDAT, 100)
6 hours = NSSSSS/3600
7 minutes = (NSSSSS − hours∗3600)/60
8 seconds = NSSSSS − hours∗3600 − minutes∗60
9

10 CALL xios define calendar(type=”Gregorian”)
11
12 ! Time origin of the time axis. It will appear as meta−data attached to the time axis in the output file
13 CALL xios set time origin(time origin=xios date(year, month, day, hours, minutes, seconds))
14
15 ! Start date of the simulation for the current context
16 CALL xios set start date(start date=xios date(year, month, day, hours, minutes, seconds))
17
18 ! Updated date = start date + NSTEP∗YRRIP%TSTEP
19 time step%second = YRRIP%TSTEP
20 CALL xios set timestep(time step)

Code snippet 22: XIOS setup to use IFS calendar

This code is part of the private ifs xios set calendar subroutine.

4.2.6 Geometry

One of the most difficult parts in setting up XIOS is the IFS geometry transfer to XIOS. Since
we are working with a 3D grid, it consists of two parts: the 1D axis definition and the 2D domain
definition.

Code snippet 23 shows how to perform the vertical axis definition. Using the loop, it basically
builds and array with as many positions as the number of vertical levels. Each position of
the array contains the number of the vertical level. IFS stores the number of vertical levels in
variable NFLEVG.

Then, using the xios set axis attr subroutine, we set up different attributes for the vertical axis:
total number of vertical levels, the array containing the vertical levels, the units (we are working
on sigma levels, so there are no units), and the direction of the axis, which is positive.

Technical Memorandum No. 825 33



Computational aspects and performance evaluation of the IFS-XIOS integration

1 INTEGER(KIND=JPIM) :: i
2 REAL(KIND=JPRB) :: j
3 REAL(KIND=JPRB), ALLOCATABLE :: zML(:)
4
5 ! Definition of model levels axis
6 ALLOCATE(zML(YDGEOMETRY%YRDIMV%NFLEVG))
7
8 j = 1.0
9 DO i = 1, YDGEOMETRY%YRDIMV%NFLEVG

10 zML(i) = j
11 j = j + 1.0
12 END DO
13
14 ! Output all model levels
15 CALL xios set axis attr(model axis name, n glo=YDGEOMETRY%YRDIMV%NFLEVG, value=zML,

↪→ unit=”−”, positive=”up”)
16
17 DEALLOCATE(zML)

Code snippet 23: Vertical axis definition

Code snippet 23 is part of the private ifs xios set axis subroutine.

The second part is the domain definition. First of all, we need to build the local domain data
(Code snippet 24) by iterating over all grid-points in the global domain to find and store in
the i index array which are the grid-points of the local domain. Thus, each IFS process will
communicate to its XIOS client which are the local grid-points.

1 !
2 !∗ Local domain data
3 !
4 j = 0
5 DO i = 1, ni glo
6 IF (YDGEOMETRY%YRMP%NGLOBALPROC(i) == MYPROC) THEN
7 j = j + 1
8 ! XIOS requires indexing from 0
9 i index(j) = i − 1

10 END IF
11 END DO

Code snippet 24: Local domain data setup

After that, there is a bigger loop (Code snippet 25) which is in charge of setting up the lon-
gitudes and latitudes of each one of the local i index grid-points. They are stored in arrays
lonvalue 1d and latvalue 1d. Furthermore, we also have to set up the boundaries for each grid-
point. Boundaries are used to delimit the area that represents each grid-point. There are 4
corners for the area of each grid-point. The easiest way to determine the boundaries of each
grid-point is using the middle point between two latitudes and the middle point between two
longitudes. We have to be careful in the first and last latitudes, since there are not grid-points
on the poles. Boundaries are stored in arrays bounds lon 1d and bounds lat 1d.
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1 zrgauslat(0) = 90.0 JPRB
2 zrgauslat(ndglg+1) = −90.0 JPRB
3 zrgauslat(1:ndglg) = ASIN(YDGEOMETRY%YRCSGLEG%RMU(1:ndglg))∗(180.0 JPRB/(RPI))
4
5 DO i = 1, ni
6 !
7 !∗ Longitudes and latitudes for local domain grid−points (from radians to degrees)
8 !
9 latvalue 1d(i) = REAL(YDGEOMETRY%YRGSGEOM NB%GELAT(i)∗(180.0 JPRB/RPI),JPRB)

10 lonvalue 1d(i) = REAL(YDGEOMETRY%YRGSGEOM NB%GELAM(i)∗(180.0 JPRB/RPI),JPRB)
11
12 !
13 !∗ Cells’ boundaries for local domain grid−points
14 !
15 zdeltax = 0.5 JPRB∗360.0 JPRB/REAL(YDGEOMETRY%YRGEM%NLOENG(YDGEOMETRY%

↪→ YRGSGEOM NB%NGPLAT(i)))
16 zdeltayup = 0.5 JPRB∗(zrgauslat(YDGEOMETRY%YRGSGEOM NB%NGPLAT(i) − 1) − zrgauslat(

↪→ YDGEOMETRY%YRGSGEOM NB%NGPLAT(i)))
17 zdeltaydw = 0.5 JPRB∗(zrgauslat(YDGEOMETRY%YRGSGEOM NB%NGPLAT(i) + 1) − zrgauslat(

↪→ YDGEOMETRY%YRGSGEOM NB%NGPLAT(i)))
18
19 IF (zrgauslat(YDGEOMETRY%YRGSGEOM NB%NGPLAT(i) − 1) == 90.0 JPRB) zdeltayup = 2.0

↪→ JPRB∗zdeltayup
20 IF (zrgauslat(YDGEOMETRY%YRGSGEOM NB%NGPLAT(i) + 1) == −90.0 JPRB) zdeltaydw =

↪→ 2.0 JPRB∗zdeltaydw
21
22 bounds lon 1d(1,i) = lonvalue 1d(i) + zdeltax
23 bounds lat 1d(1,i) = latvalue 1d(i) + zdeltaydw
24 bounds lon 1d(2,i) = lonvalue 1d(i) + zdeltax
25 bounds lat 1d(2,i) = latvalue 1d(i) + zdeltayup
26 bounds lon 1d(3,i) = lonvalue 1d(i) − zdeltax
27 bounds lat 1d(3,i) = latvalue 1d(i) + zdeltayup
28 bounds lon 1d(4,i) = lonvalue 1d(i) − zdeltax
29 bounds lat 1d(4,i) = latvalue 1d(i) + zdeltaydw
30 END DO

Code snippet 25: Longitudes, latitudes and corners setup

Finally, all these arrays that we have build, are passed to XIOS using the xios set domain attr
subroutine. In addition, we send other parameters, such as the type of domain (Gaussian), the
number of global grid-points and the number of local grid-points. We also specify that the local
domain and the data domain have the same size, i.e., there will be no halos in the data arrays
that we will send for each one of the fields. Code snippet 26 shows how it is done.
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1 ! Define global domain and local domain index
2 CALL xios set domain attr(gaussian domain name, type=’gaussian’, ni glo=ni glo, ibegin=0, ni=ni,

↪→ i index=i index)
3 ! Define local domain data
4 CALL xios set domain attr(gaussian domain name, data dim=1, data ibegin=0, data ni=ni)
5 ! Define longitudes and latitudes for grid−point cells
6 CALL xios set domain attr(gaussian domain name, lonvalue 1d=lonvalue 1d, latvalue 1d=latvalue 1d)
7 ! Define cell’s boundaries
8 CALL xios set domain attr(gaussian domain name, nvertex=nvertex, bounds lon 1d=bounds lon 1d,

↪→ bounds lat 1d=bounds lat 1d)
9

10 DEALLOCATE(i index)
11 DEALLOCATE(lonvalue 1d, latvalue 1d)
12 DEALLOCATE(bounds lon 1d, bounds lat 1d)
13 DEALLOCATE(zrgauslat)

Code snippet 26: Horizontal domain definition

Code snippets 24, 25 and 26 are part of the private ifs xios set domain subroutine.

4.2.7 Iodef.xml file

In order to complement the dynamic setup done through the XIOS API, we also had to im-
plement the iodef.xml file to perform the static setup. It contains several sections that we will
briefly mention.

The first one is the field definition (Code snippet 27). There are declared 12 3D fields and one 2D
field: temperature, ozone, surface pressure, etc. They have a reference to the corresponding grid.
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1 <field definition level=”1” enabled=”.TRUE.” default value=”1.e20” >
2 <field group id=”3D fields” >
3 <field id=”t” long name=”Temperature” standard name=”t” grid ref=”model levels” unit=”K

↪→ ” />
4 <field id=”u” long name=”U component of wind” standard name=”u” grid ref=”model levels”

↪→ unit=”m∗s−1” />
5 <field id=”v” long name=”V component of wind” standard name=”v” grid ref=”model levels”

↪→ unit=”m∗s−1” />
6 <field id=”q” long name=”Specific humidity” standard name=”q” grid ref=”model levels” unit

↪→ =”kg∗kg−1” />
7 <field id=”vo” long name=”Vorticity (relative)” standard name=”vo” grid ref=”model levels”

↪→ unit=”s−1” />
8 <field id=”d” long name=”Divergence” standard name=”d” grid ref=”model levels” unit=”s

↪→ −1” />
9 <field id=”o3” long name=”Ozone mass mixing ratio” standard name=”o3” grid ref=”

↪→ model levels” unit=”kg∗kg−1” />
10 <field id=”cc” long name=”Fraction of cloud cover” standard name=”cc” grid ref=”

↪→ model levels” unit=”(0−1)” />
11 <field id=”crwc” long name=”Specific rain water content” standard name=”crwc” grid ref=”

↪→ model levels” unit=”kg∗kg−1” />
12 <field id=”cswc” long name=”Specific snow water content” standard name=”cswc” grid ref=”

↪→ model levels” unit=”kg∗kg−1” />
13 <field id=”clwc” long name=”Specific cloud liquid water content” standard name=”clwc”

↪→ grid ref=”model levels” unit=”kg∗kg−1” />
14 <field id=”ciwc” long name=”Specific cloud ice water content” standard name=”ciwc” grid ref

↪→ =”model levels” unit=”kg∗kg−1” />
15 </field group>
16
17 <field group id=”2D dynamical fields” >
18 <field id=”sp” long name=”Surface pressure” standard name=”sp” grid ref=”surface fields”

↪→ unit=”Pa” />
19 </field group>
20 </field definition>

Code snippet 27: Field definition used in iodef.xml

Then, there is the file definition (Code snippet 28). It contains two different files, file 3D bench
and file 2D bench, which are used to output 3D and 2D fields respectively. Both files have an
output frequency of 3 hours, they output instant values (no post-processing applied), they are
output in multiple file mode, the frequency sampling of each field is 3 hours and files are forced
to be flushed into the storage system at the end of 1 simulated day.
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1 <file definition type=”multiple file” format=”netcdf4” par access=”collective” sync freq=”1d”
↪→ min digits=”4” >

2 <file id=”file 3D bench” name=”xios output/prognostic 3D fields benchmarking” output freq=”3h”
↪→ output level=”10” enabled=”.TRUE.” >

3 <field field ref=”t” name=”temperature” freq op=”3h” operation=”instant” />
4 <field field ref=”u” name=”u−wind” freq op=”3h” operation=”instant” />
5 <field field ref=”v” name=”v−wind” freq op=”3h” operation=”instant” />
6 <field field ref=”q” name=”specific humidity” freq op=”3h” operation=”instant” />
7 <field field ref=”vo” name=”vorticity” freq op=”3h” operation=”instant” />
8 <field field ref=”d” name=”divergence” freq op=”3h” operation=”instant” />
9 <field field ref=”o3” name=”ozone” freq op=”3h” operation=”instant” />

10 <field field ref=”cc” name=”cloud fraction” freq op=”3h” operation=”instant” />
11 <field field ref=”crwc” name=”rain” freq op=”3h” operation=”instant” />
12 <field field ref=”cswc” name=”snow” freq op=”3h” operation=”instant” />
13 <field field ref=”clwc” name=”liquid water” freq op=”3h” operation=”instant” />
14 <field field ref=”ciwc” name=”ice water” freq op=”3h” operation=”instant” />
15 </file>
16 <file id=”file 2D bench” name=”xios output/prognostic 2D fields benchmarking” output freq=”3h”

↪→ output level=”10” enabled=”.TRUE.” >
17 <field field ref=”sp” name=”surface pressure” freq op=”3h” operation=”instant” />
18 </file>
19 </file definition>

Code snippet 28: File definition used in iodef.xml

After that, there are the definitions of axes, domains and grids (Code snippet 29). We simply
have one vertical axis, one reduced Gaussian domain, and two different grids: model levels to
represent 3D fields and surface fields to represent 2D fields.

1 <axis definition>
2 <axis id=”model levels” long name=”vertical model levels” unit=”−” positive=”up” />
3 </axis definition>
4
5 <domain definition>
6 <domain id=”reduced Gaussian” long name=”octahedral reduced Gaussian grid” type=”gaussian”

↪→ />
7 </domain definition>
8
9 <grid definition>

10 <grid id=”surface fields” description=”2D dynamical and physical output fields” >
11 <domain domain ref=”reduced Gaussian” />
12 </grid>
13 <grid id=”model levels” description=”3D output fields on model levels” >
14 <domain domain ref=”reduced Gaussian” />
15 <axis axis ref=”model levels” />
16 </grid>
17 </grid definition>

Code snippet 29: Axis, domain and grid definition used in iodef.xml

Finally, there are some variables which are used to set up XIOS from a computational point
of view: size of the buffers, server or attached mode, info level, print performance reports, etc.
Code snippet 30 shows the variables used.
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1 <context id=”xios”>
2 <variable definition>
3 <variable group id=”buffer” >
4 <variable id=”optimal buffer size” type=”string”>performance</variable>
5 <variable id=”buffer size factor” type=”double”>1.0</variable>
6 </variable group>
7
8 <variable group id=”parameters” >
9 <variable id=”using server” type=”bool”>XIOS USING SERVER</variable>

10 <variable id=”using oasis” type=”bool”>false</variable>
11 <variable id=”info level” type=”int”>50</variable>
12 <variable id=”print file” type=”bool”>true</variable>
13 </variable group>
14 </variable definition>
15 </context>

Code snippet 30: XIOS variables definition used in iodef.xml

4.3 Grid-point fields transfer

Once the setup is done, at the end of each time step, we have to inform XIOS about the current
time step and query if we have to send any field. If so, we will send the requested data.

Code snippet 31 shows how the time step is updated and how to process just one field, in this
case a 3D GMV field which is temperature. First of all, we update the time step calling the
xios update calendar subroutine. IFS stores the current time step in variable NSTEP.

After that, we query if the field that we want to send is active in the current time step. In the
example, the subroutine xios field is active is used to query if we have to send the temperature
field.

If the field is active, we have to build an XIOS-style array before sending data. If we remember
what we explained in Section 3.1.2, IFS uses a data structure that is not usual, having the
following dimensions: NPROMA, NFLEVG, NFIELDS and NGPBLKS. This does not match
with the XIOS data arrays, where we need to send an array with the following dimensions:
longitude, latitude and vertical levels. When it uses unstructured or reduced Gaussian grids,
XIOS merges the first two dimensions, so it needs and array with these two dimensions: uni-
dimensional 2D domain and vertical levels. Therefore, we have to re-organize data of each field
before sending it, which means to perform the NPROMA blocks gather.

To perform the gather, in Code snippet 31 we iterate over blocks of size NPROMA, until all the
NGPTOT grid-points of the subdomain are processed. Then, for each block we have to iterate
all the block grid-points for all NFLEVG vertical levels. We do not need to iterate over the total
number of fields because we are gathering data of just one field.

Note that the gather is at the subdomain level, i.e., intra-node shared-memory, so MPI commu-
nications are not needed at all.

Once data is re-organized following the XIOS-style array, we can send it calling the xios send field
subroutine.
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1 INTEGER(KIND=JPIM) :: jstglo, jlev, icend, ibl, i, j
2
3 ! Update calendar of XIOS with the current time step
4 CALL xios update calendar(NSTEP)
5
6 ! GMV
7 ! Temperature
8 IF (xios field is active(”t”, .TRUE.)) THEN
9 ! Array accessing optimized for GMV, not for xios gmv

10 DO jstglo = 1, YDGEOMETRY%YRGEM%NGPTOT, YDGEOMETRY%YRDIM%NPROMA
11 icend = MIN(YDGEOMETRY%YRDIM%NPROMA,YDGEOMETRY%YRGEM%NGPTOT−jstglo

↪→ +1)
12 ibl = (jstglo−1)/YDGEOMETRY%YRDIM%NPROMA + 1
13 DO jlev = 1, YDGEOMETRY%YRDIMV%NFLEVG
14 i = jstglo
15 DO j = 1, icend
16 xios gmv(i,jlev) = YDFIELDS%YRGMV%GMV(j,jlev,YDFIELDS%YRGMV%YT0%MT,ibl)
17 i = i + 1
18 END DO
19 END DO
20 END DO
21 CALL xios send field(”t”,xios gmv)
22 END IF

Code snippet 31: NPROMA blocks gather and send of temperature field

One important thing to highlight are the XIOS thread-safe calls. Since IFS uses OpenMP for
intra-node parallelization and XIOS does not support threading, we must ensure that only one
thread at each MPI process calls XIOS subroutines. Although in previous code snippets we have
not used any kind of mechanism, in our development we actually used the OpenMP SINGLE
construct. Code snippet 32 illustrates the mechanism that we followed to have thread-safe calls.

1 !$OMP SINGLE
2 ! One single thread region
3 !$OMP END SINGLE

Code snippet 32: Mechanism to have thread-safe calls

4.4 Environment setup

Besides the source code development, it is really important to adapt the scripts in order to run
IFS and XIOS. In the following sections we will give an overview of the main changes that were
needed.

4.4.1 XIOS compilation

One of the challenges was the XIOS compilation. Since we are working in a Cray machine and
the IFS 43r3 version and its libraries that we are using are only compiled with Cray, we had
to compile XIOS using Cray as well. The problem is that there are not many Cray machines
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in Europe, so XIOS is almost always compiled with Intel or GNU. This probably implies that
XIOS is not usually tested with Cray and as a consequence, there are some issues.

First of all, the parallel compilation does not work in Cray compilers due to different bugs,
something that has been reported to the XIOS developers to solve the problem. For example, a
parallel compilation with Intel using eight threads, it takes about five minutes, while a sequential
Cray compilation it takes about eight hours.

The bigger issue was related with the version of the Cray Developer Toolkit (CDT). By default,
it loads the version 17.03, which successfully compiled XIOS, but it always failed when passing
the XIOS tests. We tried different compilation flags, but this did not solve the issue. At the
end, we discovered that using an older version of the CDT, the 16.04 version, we were able to
pass the XIOS tests.

However, we also had other minor issues, such as that by default, Cray compiler generates mod
files in capital letters, but they were not recognized when linking with XIOS. We solved this
issue by using the -ef flag, which generates .mod files in lowercase letters.

Finally, we used a conservative compilation for XIOS, i.e., using the -O1 optimization flag,
because we read that for some old Cray compilers there was a bug using the -O3 flag.

4.4.2 Including and linking XIOS

XIOS needs to be included and linked like all libraries. This is not difficult, but it was needed
to find the exact place between the large amount of IFS scripts.

Code snippet 33 shows how the include can be done.

1 VPATH := . $(VPATH) /perm/ms/spesiccf/c3xy/xios2/inc

Code snippet 33: XIOS including

Code snippet 34 shows how the link can be done. Note that we also include the libcray-c++-rts
library, since XIOS is programmed in C++.

1 −L/opt/cray/cce/8.4.6/CC/x86−64/lib/x86−64 −lcray−c++−rts \
2 −L/perm/ms/spesiccf/c3xy/xios2/lib −lxios

Code snippet 34: XIOS linking

4.4.3 Parallel netCDF and HDF5 versions

Although IFS output is in GRIB format, it is linked through environment modules with netCDF
and HDF5, libraries which have been covered in Section 2.2. IFS uses sequential versions of them,
but depending on the XIOS configuration, it needs the netCDF and HDF5 parallel versions.

We changed the two lines of Code snippet 35 by the two lines of Code snippet 36.
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1 LOAD MODULE cray−netcdf/${ netcdf version}
2 LOAD MODULE cray−hdf5/${ hdf5 version}

Code snippet 35: Old netCDF and HDF5 modules

1 LOAD MODULE cray−netcdf−hdf5parallel/${ netcdf version}
2 LOAD MODULE cray−hdf5−parallel/${ hdf5 version}

Code snippet 36: New netCDF and HDF5 modules

4.4.4 Model script

One of the tasks in the workflow of the IFS experiments is called model, which is in charge of
running the model. The associated script is obviously called model and it also calls other scripts,
like the run parallel one, which is in charge of executing the IFS binary. The run parallel script
modification is explained in next Section 4.4.5.

However, before calling run parallel we have to prepare the environment. Code snippet 37 shows
some preliminary steps. First of all, there are two variables that will be substituted by XCdp.
Through XCdp we can set up at run-time variables which are between percentage symbols. Then,
we have to copy the iodef.xml file and replace the string XIOS USING SERVER to indicate if
we will run XIOS in attached or server mode. We also have to copy the XIOS binary if it is run
in server mode.

There is another important setup regarding the Lustre striping. Lustre [43] is an open-source
parallel file system that supports many requirements of leadership class HPC simulation envi-
ronments. Lustre stores a file in one or more Object Storage Target (OST) devices. By default,
it uses one OST, but it is possible to divide the file into chunks that are stored in different OSTs.
This is known as striping, and it is used for performance purposes, especially for really big files.
ECMWF recommends to stripe a file of size more than a few hundred GBs.

According to our iodef.xml file, XIOS will store netCDF files into the xios output directory, but
depending on the configuration, files can be really huge. To be cautious, we apply an striping
of 4 OSTs for each one of the netCDF files that will be stored in xios output.

If we had not changed the number of OSTs per file, we could affect the performance of the whole
system, including the rest of users that are performing I/O at that moment. This is because we
could fill up the OST in the parallel file system where the big netCDF file would be in. When
such OST runs out of space, it also affects other user’s jobs.
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1 xios using server=%XIOS USING SERVER:false%
2 xios path=%XIOS PATH%
3
4 cp $TROOT/$EXPVER/ifs−repo/ifs−source/scripts/gen/iodef.xml .
5 sed −i −− ”s/XIOS USING SERVER/$xios using server/g” ./iodef.xml
6
7 mkdir xios output
8 lfs setstripe −c 4 xios output
9

10 if [[ $xios using server = true ]] ; then
11 cp ${xios path}/bin/xios server.exe .
12 fi

Code snippet 37: XIOS and Lustre setup in model script

Once all setup is done, it is possible to call run parallel to execute the IFS binary. Code snip-
pet 38 shows a simplified version of how to use run parallel. If we want to run IFS and XIOS
in MPMD mode, we need to pass to run parallel a file that contains in different lines each one
of the binaries and their arguments. Otherwise, we call run parallel as usual, which means that
IFS will use XIOS in attached mode.

1 if [[ $xios using server = true ]] ; then
2 touch executables file
3 chmod u+x executables file
4 echo ”ifsMASTER −f h%FCLENGTH% −t $timestep −v ecmwf −e $EXPVER” >> executables file
5 echo ”xios server.exe” >> executables file
6 run parallel −m 2 executables file 2>ifs.err >ifs.log
7 else
8 run parallel ifsMASTER −f h%FCLENGTH% −t $timestep −v ecmwf −e $EXPVER 2>ifs.err >ifs.log
9 fi

Code snippet 38: MPMD mode preliminary setup in model script

4.4.5 Supporting MPMD mode

The last major change that we did was in the run parallel script to run IFS and XIOS in Multiple-
Program Multiple-Data (MPMD) mode. This script was already prepared to run binaries in
MPMD mode, but it seems that was never tested and it contained some errors. We fixed them
and extended the script to be fully integrated with XIOS. We will show some code snippets that
are useful to understand what we did.

At the beginning, we set up through XCdp several variables that are used by XIOS (Code snip-
pet 39). They are related to the affinity of XIOS: number of XIOS servers, number of servers
per node, number of server per Non-Uniform Memory Access (NUMA) socket within a node,
etc. We also specify that we do not want threads, since XIOS does not use OpenMP.
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1 xios using server=%XIOS USING SERVER:−1%
2
3 if [[ $xios using server = true ]]; then
4 submit total tasks=%NPES FC:−1%:%NPES XIOS:−1%
5 submit tasks per node=$submit tasks per node:%XIOS TASKS PER NODE:−1%
6 submit tasks per numa node=$submit tasks per numa node:%XIOS TASKS PER NUMA NODE:−1%
7 submit cpus per compute unit=$submit cpus per compute unit:1
8 omp num threads=$omp num threads:1
9 elif [[ $xios using server = false ]]; then

10 submit total tasks=%NPES FC:−1%
11 fi

Code snippet 39: XIOS variables setup

Another important variable is MPICH DMAPP APP IS WORLD, which by default is set to 0.
When we were testing the MPMD mode, we were having a deadlock in the execution without
any kind of error. We spent a lot of time trying to understand why it was happening. We
fixed the error by using the setup of Code snippet 40. Cray MPICH internally uses DMAPP,
and if we set MPICH DMAPP APP IS WORLD to 1, it uses MPMD for MPI, but treats each
DMAPP application as if it is a distinct job. MPI ranks are globally contiguous and global MPI
communication is possible.

1 export MPICH DMAPP APP IS WORLD=1

Code snippet 40: Environment variable to run in MPMD mode

Finally, in Code snippet 41 we show the command line that will execute both IFS and XIOS.
This command line is the result of executing the code that we implemented in run parallel. It
has several parameters that determine the geometry of the parallel job.

Binaries are separated by a colon and their arguments are passed after the name. For example,
IFS has several arguments, while XIOS does not have anyone. Then, each binary has its own
aprun parameters: the number of processes (-n), the number of processes per node (-N ), the
number of processes per NUMA socket (-S), the number of cores per each process (-d) and the
number of logical threads, i.e., hyperthreading (-j). In addition, there are global parameters for
both binaries, such as CPU binding (-cc), amount of memory per each process (-m) and the
NUMA memory affinity (-ss).

Note that for IFS, we also set the number of OpenMP threads.

1 aprun −cc cpu −m8000h −n 702 −N 12 −S 6 −j 2 −d 6 −ss env OMP NUM THREADS=6 ./
↪→ ifsMASTER −f h240 −t 600.0 −v ecmwf −e b0s8 : −cc cpu −n 10 −N 1 −j 1 −d 1 ./xios server.
↪→ exe

Code snippet 41: Example of an aprun command running IFS and XIOS
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5 Performance analysis and optimization

After the integration, the next step is to study the computational performance to detect potential
bottlenecks and optimize them if possible.

The methodology that we used to analyze the performance and optimize the code is illustrated
in Figure 19.

Firstly, we measure the execution time to use it as a reference. Then, using a profiling and/or
tracing tool, we detect any possible bottleneck. Following up, we apply the proper optimization
technique, and we also verify that the results are correct.

After that, we measure the execution time again, and depending on the time improvement of
the optimization, we definitely integrate it or we discard it. If we discard the optimization, we
try to find a better optimization, while if we integrate the optimization, we have to choose the
next step: if the overall speedup including all the optimization is good enough, we end up the
process; otherwise, we start a new iteration by performing a new performance analysis.
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Figure 19: Performance analysis and optimization flowchart

Before explaining the optimization techniques that we performed, it is better to give some
execution times about the IFS-XIOS integration. It is very important to keep in mind that
all the performance numbers that appear in this document are using the IFS configuration
explained in later Section 6.2. In summary, we use: the T1279 octahedral reduced Gaussian
grid with 137 verticals levels; the forecast has a length of 10 days with a time step of 600 seconds
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and outputs at a frequency of 3 hours; IFS uses 702 MPI processes with 6 OpenMP threads
per process, which gives a total of 4212 cores. In addition, it is very important to mention
that our development does not execute FullPos, which will be needed in the future to properly
output data and perform vertical interpolations that are not supported by XIOS. This part of
the work is currently under development, but for analyzing the IFS-XIOS integration from a
computational point of view, it was not necessary to have the whole project finished. Therefore,
we have to keep in mind that comparing our development against the MF I/O server and the
sequential output scheme is not 100% fair, since they execute FullPos.

The total execution time of IFS and XIOS without any optimization takes 7773 seconds for a
total of 1440 time steps, being this total execution time the summation of all time steps plus a
period of initialization and finalization of the model. To have a reference and changing only the
I/O scheme, the sequential output scheme takes 9054 seconds, the MF I/O server takes 7535
seconds, and the same execution disabling the output takes 7356 seconds.

If we focus on the execution of one time step, the execution times are of the order of less than
10 seconds. One of the IFS log files reports the execution time per each time step. Code snip-
pet 42 illustrates a simplified output from time step 311 to 321. The 7th column indicates the
individual execution time. Regular time steps last about 4.7 seconds, while one out of six time
steps last about 6.7 seconds. The slower ones are in charge of also executing the radiation (it is
not computed at each time step due to computational cost reasons).

1 12 : 2 4 : 21 0AAA00AAA STEPO 311 27.918 27 .918 4 .680 164 :25
2 12 : 2 4 : 25 0AAA00AAA STEPO 312 28.082 28 .082 4 .702 164 :54
3 12 : 2 4 : 32 0AAA00AAA STEPO 313 40.167 40 .167 6 .734 165 :34
4 12 : 2 4 : 37 0AAA00AAA STEPO 314 27.714 27 .714 4 .646 166 :01
5 12 : 2 4 : 41 0AAA00AAA STEPO 315 28.526 28 .526 4 .788 166 :30
6 12 : 2 4 : 46 0AAA00AAA STEPO 316 28.086 28 .086 4 .714 166 :58
7 12 : 2 4 : 51 0AAA00AAA STEPO 317 27.938 27 .938 4 .679 167 :26
8 12 : 2 4 : 55 0AAA00AAA STEPO 318 27.370 27 .370 4 .592 167 :53
9 12 : 2 5 : 02 0AAA00AAA STEPO 319 39.994 39 .994 6 .708 168 :33

10 12 : 2 5 : 07 0AAA00AAA STEPO 320 28.826 28 .826 4 .826 169 :02
11 12 : 2 5 : 12 0AAA00AAA STEPO 321 28.034 28 .034 4 .701 169 :30

Code snippet 42: IFS log file with non-output time steps

Furthermore, in Code snippet 43 we provide specific execution times of our developed code
and included in the IFS execution. These times are obtained using the GSTATS profiling
tool, briefly explained in following Section 5.1. There are three profiled subroutines, SUX-
IOS INI, SUXIOS CTXT and CXIOS, which corresponds to our public suxios ini, suxios ctxt
and ifs xios send fields subroutines respectively. Note that suxios fin does not appear, although
we tried to profile it. It could be related to the fact that it finalizes MPI and as a consequence
GSTATS is not able to properly finish the profiling.

The time that these three subroutines take is not considerable: initialization takes 0.5 seconds,
context setup takes 9.5 seconds, and the NPROMA blocks gather and send of fields take 84.8
seconds. In relative terms, they sum 1.24% of the total execution time (last column).
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1 ROUTINE CALLS SUM( s ) AVE(ms) STDDEV(ms) MAX(ms) SUMB( s ) FRAC(%)
2 SUXIOS INI 1 0 .5 526 .5 0 .0 526 .5 0 .0 0 .01
3 SUXIOS CTXT 1 9 .5 9473 .2 0 .0 9473 .2 0 .0 0 .12
4 CXIOS 1441 84 .8 58 .9 240 .3 1158 .2 15 .2 1 .11

Code snippet 43: Profiling analysis with GSTATS of the non-optimized IFS-XIOS
integration

In Section 5.1, we will briefly explain the tools that we used to study the computational perfor-
mance.

After that, we will explain the different optimization techniques that we used (5.2, 5.3, 5.4) and
the reason why we used them.

Finally, in Section 5.5 we explain three additional optimization techniques that we did not
implement due to the following reasons:

• It was not possible to use it.

• It was implemented by the compiler using the proper compilation flag.

• It is enabled by default, but it was interesting to see what happens if not used.

5.1 Tools

We basically used two kind of tools: profiling and tracing. They are explained in the following
two sections.

5.1.1 Profiling

Profiling is the analysis of the application’s behavior using information gathered as the program
executes in order to determine which parts need to be optimized. To achieve this goal, a profiling
tool takes into account aspects such as execution time per subroutine, execution time per line
of code (this implies to know which instructions have more cost), which are the dependencies
between functions (it builds a tree with calls), the number of times that each function has been
called, etc. We can get all this data without looking at the source code or even without having
to instrument it.

One popular tool is gprof, which offers simplicity. However, since we are not interested in
profiling the entire code, we used the GSTATS timers. IFS has its own low overhead timers
called GSTATS. They are really simple to use: declare an identifier of the region that you want
to instrument, and add two calls, at the beginning and at the end of the region.

At the end of the execution, GSTATS generates a profile for each instrumented region: number
of executed times, the average, the aggregated, the maximum, standard deviation, etc.
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5.1.2 Tracing

Tracing is the process of recording event-based performance data along the execution of a pro-
gram. Using a viewer we can see the behavior of the application in our machine, focusing on
hardware counters, communication patterns or memory hierarchy. The tools used to trace the
model were Extrae and Paraver, which are open-source and developed by the BSC Performance
Tools group [44]:

• Extrae is a package used to instrument the code automatically and/or manually through
its API. It generates Paraver trace-files with hardware counters, MPI messages and other
information for a post-mortem analysis. It can be downloaded and installed in any HPC
facility.

• Paraver is a trace browser that can show a global visual qualitative perspective of the
application behavior for later focus on the bottlenecks with a detailed quantitative analysis.
The tool allows to create views with any parameter recorded and points to a region of a
code, making process of modification easier.

Figure 20 shows an example of a trace, which in this case is a regular time step from an IFS-XIOS
execution. A trace has the timeline on the x axis and the MPI processes on the y axis.

Along the timeline, some (or many) events happen, which can be related to MPI calls, cache
misses, Million Instructions Per Second (MIPS) and many other performance metrics. These
events can be chosen with Paraver, but it depends on the configuration of Extrae, i.e., we have
to set up in an XML file the events that we want to generate.

The trace of the Figure 20 shows MPI call events, where each color represents an MPI function.
Figure 21 illustrates in detail each one of the possible colors, i.e., possible MPI functions. Note
that the first color, light blue, it is actually not an MPI function, but it represents computation
(outside MPI).

Figure 20: Example of a trace with MPI call events. It shows a complete regular time step of
an IFS-XIOS execution. Timeline is on the x axis and MPI processes on the y axis.
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Figure 21: Legend with the colors representation of the MPI calls used by Paraver

Although other metrics have been evaluated too, the figures showed in this document are traces
related to MPI call events because it is enough for the performance analyses and optimization
techniques that we used.

5.2 Threading with OpenMP

One of the optimization was to parallelize the NPROMA blocks gather using OpenMP threads.
As we explained in Section 4.3, the gather was necessary because the requested XIOS arrays
have different dimensions with regard to the IFS ones, so it was necessary to build those new
arrays.

According to the profiling analysis with GSTATS timers, the gather does not represent too
much time. Code snippet 44 shows in detail the gather of the ciwc field. It takes about 5.8
ms, so the optimization would not have a large impact in the execution time for these tests.
However, while the OpenMP master thread is performing the gather, the rest of threads are
idle, so this operation is actually inefficient. In addition, it could become a bottleneck for fu-
ture experiments demanding more computational power. Thus, it is better to use all the threads.

1 ROUTINE CALLS SUM( s ) AVE(ms) STDDEV(ms) MAX(ms) SUMB( s ) FRAC(%)
2 ciwc GATHER 80 0 .5 5 .8 0 .9 6 .5 0 .0 0 .01

Code snippet 44: Profiling analysis with GSTATS of a field gather

We followed the parallelization strategy of Code snippet 45. It contains the gather and send of
two fields, specific humidity and temperature, in order to understand how we try to overlap the
send of one field with the gather of the next one. This is extended to many other fields using
the same strategy, but showing two fields is enough for illustrative purposes.

Note that now, the condition of each IF is a logical variable, since we have performed the call to
the xios field is active subroutine and stored the condition before the OpenMP parallel region.
This is because XIOS subroutines are not thread-safe.

We start by parallelizing the gather using an OMP DO directive, where the granularity of
chunks is an NGPBLKS block. This strategy is beneficial for OpenMP, since IFS data arrays
were designed to that end. We explained the benefits of this design in Section 3.1.2.
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After that, once we have an XIOS-style array, we can send it to XIOS. Only one of the threads
will perform the send, while the others will perform the gather of the next field. This overlap is
possible because we use the NOWAIT clause in the SINGLE construct.

1 !$OMP PARALLEL PRIVATE(jstglo,icend,ibl,jlev)
2
3 ! GFL − Specific humidity
4 IF (q) THEN
5 !$OMP DO SCHEDULE(DYNAMIC)
6 DO jstglo = 1, YDGEOMETRY%YRGEM%NGPTOT, YDGEOMETRY%YRDIM%NPROMA
7 icend = MIN(YDGEOMETRY%YRDIM%NPROMA,YDGEOMETRY%YRGEM%NGPTOT−jstglo

↪→ +1)
8 ibl = (jstglo−1)/YDGEOMETRY%YRDIM%NPROMA + 1
9 DO jlev = 1, YDGEOMETRY%YRDIMV%NFLEVG

10 xios gfl(jstglo:jstglo+icend−1,jlev) = YDFIELDS%YRGFL%GFL(1:icend,jlev,YGFL%YQ%MP,ibl)
11 END DO
12 END DO
13 !$OMP END DO
14 !$OMP SINGLE
15 CALL xios send field(”q”,xios gfl)
16 !$OMP END SINGLE NOWAIT
17 END IF
18
19 ! GMV − Temperature
20 IF (t) THEN
21 !$OMP DO SCHEDULE(DYNAMIC)
22 DO jstglo = 1, YDGEOMETRY%YRGEM%NGPTOT, YDGEOMETRY%YRDIM%NPROMA
23 icend = MIN(YDGEOMETRY%YRDIM%NPROMA,YDGEOMETRY%YRGEM%NGPTOT−jstglo

↪→ +1)
24 ibl = (jstglo−1)/YDGEOMETRY%YRDIM%NPROMA + 1
25 DO jlev = 1, YDGEOMETRY%YRDIMV%NFLEVG
26 xios gmv(jstglo:jstglo+icend−1,jlev) = YDFIELDS%YRGMV%GMV(1:icend,jlev,YDFIELDS%

↪→ YRGMV%YT0%MT,ibl)
27 END DO
28 END DO
29 !$OMP END DO
30 !$OMP SINGLE
31 CALL xios send field(”t”,xios gmv)
32 !$OMP END SINGLE NOWAIT
33 END IF
34 ! .
35 ! . Gather and send many other fields
36 ! .
37 !$OMP END PARALLEL

Code snippet 45: Parallelization strategy of the NPROMA blocks gather

This optimization slightly improves the performance as it can be seen in results Section 6.4 (see
Figures 27 and 28). The execution time is reduced from 7773 seconds to 7705 seconds. It is
important to highlight that depending on the distribution of cores between MPI and OpenMP,
we could exploit much more this optimization. For example, if we have a configuration where
we use more cores for OpenMP threads and less cores for MPI processes, we would have less
subdomains, but much bigger. Thus, the gather with just one thread would be much more
significant, because subdomains would have much more data to be gathered.
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Code snippet 46 shows the profiling analysis of the field ciwc with GSTATS timers using the
optimization. The average time is reduced from 5.8 ms to 1.2 ms. Note that this is also exten-
sible to all other fields that we need to output.

1 ROUTINE CALLS SUM( s ) AVE(ms) STDDEV(ms) MAX(ms) SUMB( s ) FRAC(%)
2 ciwc GATHER 80 0 .1 1 .2 0 .2 2 .3 0 .0 0 .00

Code snippet 46: Profiling analysis with GSTATS of an optimized gather

5.3 Optimized compilation of XIOS

The following optimization was the compilation of XIOS. The compilation of XIOS using the
-O1 flag should be improved in order to take advantage of the optimization introduced by the
compiler automatically, where the use of -O2 or -O3 are the options recommended by default.
However, as we explained in Section 4.4.1 we had a lot of issues to use them.

We were analyzing the performance reports of XIOS and we realized that it was spending a
considerably amount of time for just writing data, especially on client side. Code snippet 47
shows that IFS spent about 132 seconds in executing XIOS client code, while Code snippet 48
shows that XIOS servers spent about 3196 seconds in processing events.

We know that enabling post-processing leads to an increase of the XIOS execution time. De-
pending on the post-processing filter used, this post-processing is performed on client side or on
server side. For example, horizontal domain interpolations are performed on client side, while
data compression is performed on server side. However, since in our tests there is not post-
processing at all, the execution time for XIOS seems to be too much high. For this reason, we
thought that it would be interesting to try to improve the XIOS compilation.

1 −> r epor t : Performance r epor t : Whole time from XIOS i n i t and f i n a l i z e :
↪→ 7681.68 s

2 −> r epor t : Performance r epor t : t o t a l time spent f o r XIOS : 132.715 s
3 −> r epor t : Performance r epor t : time spent f o r wa i t ing f r e e b u f f e r : 3 .80519

↪→ s
4 −> r epor t : Performance r epor t : Ratio : 0 .0495359 %

Code snippet 47: XIOS report on client side

1 −> r epor t : Performance r epor t : Time spent f o r XIOS : 7681.68
2 −> r epor t : Performance r epor t : Time spent in p r o c e s s i n g events : 3196 .4
3 −> r epor t : Performance r epor t : Ratio : 41.6107%

Code snippet 48: XIOS report on server side

As we mentioned in Section 4.4.1, we read that for some old Cray compilers there was a bug
using the -O3 flag. However, this bug may have been solved in new versions, so once updated,
we tried to use -O3. Interestingly, XIOS compiled and tests successfully passed.
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When we tried this new optimized version with IFS, we experienced an improvement in the
execution time as it can be seen in results Section 6.4 (see Figures 27 and 28). The execution
time is reduced from 7705 seconds to 7629 seconds. Code snippet 49 shows that the execution
time on client side is reduced from 132 seconds to 40 seconds. On server side (Code snippet 50),
same effect occurs and execution time is reduced from 3196 seconds to 1382 seconds.

1 −> r epor t : Performance r epor t : Whole time from XIOS i n i t and f i n a l i z e :
↪→ 7562.36 s

2 −> r epor t : Performance r epor t : t o t a l time spent f o r XIOS : 40 .3018 s
3 −> r epor t : Performance r epor t : time spent f o r wa i t ing f r e e b u f f e r :

↪→ 0.463693 s
4 −> r epor t : Performance r epor t : Ratio : 0 .00613159 %

Code snippet 49: XIOS report on client side once optimized

1 −> r epor t : Performance r epor t : Time spent f o r XIOS : 7562.37
2 −> r epor t : Performance r epor t : Time spent in p r o c e s s i n g events : 1382.16
3 −> r epor t : Performance r epor t : Ratio : 18.2768%

Code snippet 50: XIOS report on server side once optimized

This optimization will be especially useful when post-processing is used, since it typically requires
a lot of computation.

5.4 Overlapping computation and communication

The last optimization that we implemented was an overlapping between the computation of IFS
and the MPI communications to XIOS.

We mentioned that non-output time steps have execution times of about 4.7 seconds (regular
time step) and about 6.7 seconds (time step with radiation) as showed in Code snippet 42.
However, we realized that in an output time step, there is a slight increase in the execution time
of the three following time steps. Code snippet 51 illustrates this effect: time step 324 performs
output through XIOS, however, the time steps which experience an increase are 325, 326 and
327. This increase actually has many variability among similar output time steps, which means
that sometimes is negligible and sometimes is really noticeable.

Nevertheless, in general we can observe this pattern in the following three time steps of an out-
put time step.
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1 12 : 24 : 55 0AAA00AAA STEPO 318 27.370 27 .370 4 .592 167 :53
2 12 : 25 : 02 0AAA00AAA STEPO 319 39.994 39 .994 6 .708 168 :33
3 12 : 25 : 07 0AAA00AAA STEPO 320 28.826 28 .826 4 .826 169 :02
4 12 : 25 : 12 0AAA00AAA STEPO 321 28.034 28 .034 4 .701 169 :30
5 12 : 25 : 16 0AAA00AAA STEPO 322 27.770 27 .770 4 .655 169 :58
6 12 : 25 : 21 0AAA00AAA STEPO 323 27.690 27 .690 4 .654 170 :26
7 12 : 25 : 26 0AAA00AAA STEPO 324 27.854 27 .854 4 .679 170 :53
8 12 : 25 : 33 0AAA00AAA STEPO 325 42.771 42 .771 7 .158 171 :36
9 12 : 25 : 38 0AAA00AAA STEPO 326 30.114 30 .114 5 .044 172 :06

10 12 : 2 5 : 43 0AAA00AAA STEPO 327 30.870 30 .870 5 .181 172 :37
11 12 : 2 5 : 48 0AAA00AAA STEPO 328 27.874 27 .874 4 .682 173 :05

Code snippet 51: IFS log file with one output time step

In order to understand what was happening, we traced the execution with Extrae. Figure 22
illustrates three time steps, where the first one is performing output at the end. The major part
of processes of the trace are the IFS ones, while some processes on the bottom are the XIOS
ones.

In this trace, IFS is using the output scheme that we explained in Section 4 and showed in
Figure 18. This scheme sequentially executes at the end of an output time step these three
steps: update calendar, NPROMA blocks gather and send fields. If it is not an output time
step, it only performs the update calendar step.

The trace reveals an interesting point: at the beginning of the next time step after an output
time step (second time step in Figure 22), there is an increase in the communications among
IFS processes. They are basically performing an MPI Waitany and an MPI Alltoallv, but they
seem to be delayed according to the time step where this should be done.

The problem is related to the moment where some fields are sent to XIOS. Although they
are sent using asynchronous communications to overlap with computation, at the beginning of
the time step IFS is not performing computation, but synchronous communication. This leads
IFS to wait for XIOS asynchronous communications and its own synchronous communications.
IFS communications have to wait because nodes and network are already occupied by XIOS
communications.

In addition, at the beginning of the third time step there is also a delay in the MPI Waitany and
MPI Alltoallv execution, though at the end of the second time step no field is sent at all. So we
concluded that when executing the update calendar after an output time step, XIOS performs
costly communications that occupy the network resources which cannot be used by IFS at that
moment.
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Figure 22: Trace with three IFS time steps

Then, knowing that update calendar and send fields steps can potentially collide with IFS
communications, we considered to re-order them along the execution time to truly overlap
XIOS communication with IFS computation. According to Figure 22, at each time step there is
a huge area (light blue) where IFS is only performing computation. This region is in charge of
executing the physics of IFS. Ideally, it is a perfect place to perform the XIOS communications.

Our new scheme with re-ordered steps is illustrated in Figure 23: the update calendar step (Cx)
is prior called at the beginning of the physics in the same time step; the NPROMA blocks gather
(Gx) is the only step that remains at the end of the same time step; and the send fields step
(Sx) is delayed to the next time step at the beginning of the physics, called before the update
calendar of the next time step (Cx+1).

Once all time steps are performed, we may need to execute the send fields step (Sn) of the last
time step, something that it is negligible for the final execution time.
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Figure 23: Optimized output scheme developed for IFS. The three needed steps to output data
are split: the update calendar is performed in the middle of the time step; the NPROMA blocks
gather is maintained at the end of the time step; and the send fields is delayed to the next time
step

The approach to implement the first scheme was to use just one subroutine called ifs xios send fields,
which contained the three essential steps: update calendar, NPROMA blocks gather and send
fields.

The implementation of the new scheme is not difficult: we split the three steps into three different
subroutines:

• ifs xios calendar : it contains the call to the xios update calendar subroutine and all the
calls to xios field is active for each one of the fields to individually store in logical variables
if they need to be sent or not.

• ifs xios gather fields: depending on the values of the logical variables, this subroutine will
perform the NPROMA blocks gather of the fields that need to be sent.

• ifs xios send fields: depending on the values of the logical variables, this subroutine will
send the fields which are active.

These three public subroutines are placed in the proper places of the IFS code so that the new
scheme is fully implemented.

According to the results that are shown in Section 6.4 (see Figures 27 and 28), it is the optimiza-
tion that gives more improvement in the total execution time: it is reduced from 7629 seconds
of the previous optimization to 7507 seconds.

This new scheme improves the execution time of the three time steps that follow an output time
step. Code snippet 52 shows this behaviour: time step 324 performs output, but it almost does
not affect the execution time of time steps 325, 326 and 327.
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1 12 : 2 7 : 45 0AAA00AAA STEPO 318 26.926 26 .926 4 .514 162 :23
2 12 : 2 7 : 52 0AAA00AAA STEPO 319 38.414 38 .414 6 .441 163 :01
3 12 : 2 7 : 56 0AAA00AAA STEPO 320 27.054 27 .054 4 .535 163 :28
4 12 : 2 8 : 01 0AAA00AAA STEPO 321 27.030 27 .030 4 .534 163 :55
5 12 : 2 8 : 05 0AAA00AAA STEPO 322 26.882 26 .882 4 .502 164 :22
6 12 : 2 8 : 10 0AAA00AAA STEPO 323 27.394 27 .394 4 .607 164 :50
7 12 : 2 8 : 15 0AAA00AAA STEPO 324 27.142 27 .142 4 .549 165 :17
8 12 : 2 8 : 21 0AAA00AAA STEPO 325 39.310 39 .310 6 .579 165 :56
9 12 : 2 8 : 26 0AAA00AAA STEPO 326 28.318 28 .318 4 .755 166 :24

10 12 : 2 8 : 31 0AAA00AAA STEPO 327 28.686 28 .686 4 .813 166 :53
11 12 : 2 8 : 35 0AAA00AAA STEPO 328 26.990 26 .990 4 .527 167 :20

Code snippet 52: IFS log file with one output time step once optimized

If we trace this new scheme, Figure 24 indicates that there is no delay in the MPI Waitany and
MPI Alltoallv operations at the beginning of an IFS time step. It is visible how IFS executes
the NPROMA blocks gather at the end of the first time step and the call to send fields at the
beginning of the physics in the second time step.

However, it is also important to remark that now there is a delay at the end of time steps two
and three, but it is less significant than the delay of the first scheme.

Figure 24: Trace with three IFS time steps once optimized

Figure 25 shows a comparison of the two output schemes. Traces of Figures 22 and 24 are
compared using the same elapsed time. It is visible how the three time steps of the trace that
uses the optimized output scheme (below) finish earlier than the other three time steps, the ones
that use the non-optimized scheme.
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Figure 25: Trace comparison using the same elapsed time between the non-optimized overlapping
(above) and the optimized overlapping (below). The three time steps of the optimized trace finish
earlier than the three ones of the non-optimized trace

5.5 Explored options

We also considered three additional optimization techniques, but as we explained at the begin-
ning of this section, we did not implement them.

5.5.1 Vectorization with SIMD instructions

One of the key points in current x86 machines is the use of vector instructions, also known as
Single Instruction, Multiple Data (SIMD) instructions. We thought that they would be really
important for performing the NPROMA blocks gather, in order to speed up the whole process.

However, before any kind of implementation, we checked the assembly code to know if compiler
was using them. Effectively, Cray compiler was vectorizing the gather, as it is shown in Code
snippet 53. At the beginning, it uses a series of vmovaps instructions to move data from memory
to vector registers (xmm). Then, this data is moved from vector registers to the stack (rsp).
Finally, once all data is in the stack, Cray compiler calls the xios send field r8 2d subroutine
using the callq instruction.
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1 21482846: c6 84 24 e0 00 00 00 movb $0x74,0xe0(%rsp)
2 2148284d: 74
3 2148284e: c5 f8 28 05 6a 55 89 vmovaps 0x2489556a(%rip),%xmm0 #45d17dc0 <$data init$yomxios

↪→ +0x440>
4 21482855: 24
5 21482856: c5 f8 28 0d 52 55 89 vmovaps 0x24895552(%rip),%xmm1 #45d17db0 <$data init$yomxios

↪→ +0x430>
6 2148285d: 24
7 2148285e: c5 f8 28 15 3a 55 89 vmovaps 0x2489553a(%rip),%xmm2 #45d17da0 <$data init$yomxios

↪→ +0x420>
8 21482865: 24
9 21482866: c5 f8 28 1d 22 55 89 vmovaps 0x24895522(%rip),%xmm3 #45d17d90 <$data init$yomxios

↪→ +0x410>
10 2148286d: 24
11 2148286e: c5 f8 28 25 0a 55 89 vmovaps 0x2489550a(%rip),%xmm4 #45d17d80 <$data init$yomxios

↪→ +0x400>
12 21482875: 24
13 21482876: c5 f8 28 2d f2 54 89 vmovaps 0x248954f2(%rip),%xmm5 #45d17d70 <$data init$yomxios +0

↪→ x3f0>
14 2148287d: 24
15 2148287e: c5 f8 29 84 24 50 01 vmovaps %xmm0,0x150(%rsp)
16 21482885: 00 00
17 21482887: c5 f8 29 8c 24 40 01 vmovaps %xmm1,0x140(%rsp)
18 2148288e: 00 00
19 21482890: c5 f8 29 94 24 30 01 vmovaps %xmm2,0x130(%rsp)
20 21482897: 00 00
21 21482899: c5 f8 29 9c 24 20 01 vmovaps %xmm3,0x120(%rsp)
22 214828a0: 00 00
23 214828a2: c5 f8 29 a4 24 10 01 vmovaps %xmm4,0x110(%rsp)
24 214828a9: 00 00
25 214828ab: c5 f8 29 ac 24 00 01 vmovaps %xmm5,0x100(%rsp)
26 214828b2: 00 00
27 214828b4: 48 89 e0 mov %rsp,%rax
28 214828b7: 48 05 e0 00 00 00 add $0xe0,%rax
29 214828bd: 48 89 84 24 d0 00 00 mov %rax,0xd0(%rsp)
30 214828c4: 00
31 214828c5: 48 c7 84 24 d8 00 00 movq $0x1,0xd8(%rsp)
32 214828cc: 00 01 00 00 00
33 214828d1: 48 8b bc 24 d0 00 00 mov 0xd0(%rsp),%rdi
34 214828d8: 00
35 214828d9: 48 89 e6 mov %rsp,%rsi
36 214828dc: 48 81 c6 00 01 00 00 add $0x100,%rsi
37 214828e3: ba 01 00 00 00 mov $0x1,%edx
38 214828e8: e8 53 2a 4f 03 callq 24975340 <xios send field r8 2d$idata >

Code snippet 53: Vectorization of the NPROMA blocks gather

5.5.2 Memory affinity

The majority of HPC machines use Non-Uniform Memory Access (NUMA) nodes. This type of
computers are characterized by having more than one processor, which share memory without
uniform access time. This means that the whole memory is distributed across the processors,
where each processor locally owns a part of the memory. However, processors are able to access
other processors’ local memory, but more slowly.

Cray XC40 nodes have two NUMA sockets (or processors), each one with 18 cores and its own
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local memory. When running a parallel job with aprun, it is possible to specify if sockets are
allowed to allocate memory from each other or not. The -ss flag indicates that a core or a thread
can allocate only the memory local to its assigned NUMA socket.

In theory, using this flag it should give more computational performance, since slow crossed
memory allocations between sockets are not allowed. This type of tests are known as memory
affinity. Our idea was to test and potentially use the -ss optimal option. However, by default
IFS uses the -ss flag to run, so this optimization was already in use.

Nevertheless, we thought that it would be useful to see if -ss was certainly optimizing the run
of IFS, so we repeated the experiment removing this flag. We observed that the total execution
time dramatically increased by 20%. Thus, we proved that the -ss flag to achieve NUMA affinity
is mandatory for this kind of applications.

5.5.3 Derived MPI Datatypes

We have seen that IFS-style arrays and XIOS-style arrays are different, so we needed to perform
an NPROMA blocks gather before sending fields to XIOS. We occurred that using derived MPI
Datatypes could be possible to avoid the gather.

The idea of using derived MPI Datatypes [45] is to describe the layout of data structures in
memory. This means that they are used to describe how data is stored: stride between elements,
how many contiguous elements per block and the block count. It is possible to describe vectors,
structs, etc. Thus, the NPROMA blocks gather would not be needed.

Nevertheless, we were not able to use this technique because we do not directly work with
MPI subroutines when we send data to XIOS. The only way is by calling the xios send field
subroutine, which is from the XIOS API. Although this cannot be done, it could be suggested
to the XIOS developers to add it as a new feature in the future.
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6 Evaluation

In this section we will evaluate the results of the development and the optimization techniques.
In Section 6.1 we overview the HPC platform. In Section 6.2 we explain the IFS configuration
that we used to perform the benchmark tests. Then, in Section 6.3 we show the two metrics
that are used to measure the computational performance. Finally, in Section 6.4 we explain all
the different tests that we performed.

6.1 HPC platform and compilation environment

Performance evaluation was conducted on the ECMWF’s High Performance Computing Facility
(HPCF) [46], which is a Cray system that has two identical Cray XC40 clusters. It has a peak
performance of 8499 teraflops.

Each Cray XC40 cluster has 3610 compute nodes running the Cray CLE 5.2 UP04 operating
system. Nodes are made of 128 GB of memory and two Intel E5-2695v4 ”Broadwell” processors,
each with 18 cores. It is possible to activate hyper-threading, offering a total of 72 threads.

Cores have available three levels of cache, L1, L2 and L3, having 64 KiB, 256 KiB and 45 MiB
(shared) of memory respectively. They operate at a clock frequency of 2.1 GHz.

The cluster uses the AriesTM Interconnect network technology, which implements a ”dragonfly”
topology. In addition, Lustre is used as the parallel file system.

The Cray Developer Toolkit (CDT) version 16.04 and the Cray Compiling Environment (CCE)
version 8.4.6 were used to compile both IFS and XIOS. They were built with Cray MPICH 7.3.3.

6.2 IFS configuration

It is really important to choose a proper IFS configuration to benchmark our development, since
we want to be as close as possible to real experiments. Thus, we could have an exact idea of the
benefits of using XIOS.

We will compare and discuss in Section 6.4 the different output schemes: sequential output, MF
I/O server, XIOS server (different optimized versions) and also no output, to know which is the
maximum achievable speedup.

Table 1 shows a summary of the basic IFS parameters that are used in the configuration to
compare all the output schemes. We use the octahedral reduced Gaussian grid in high resolution,
which is the same that ECMWF uses for its operational forecast. We also use 702 MPI processes
with 6 OpenMP threads for each one, which gives a total of 4212 processing elements. This
distribution of processing elements is recommended by ECMWF, because it offers a good balance
between performance and efficiency. Moreover, we do not change neither the number of MPI
processes nor the number of OpenMP threads because it would be a scalability study, but it is
not part of this work. In order to evaluate the computational performance of our development,
it is preferable to focus on the number of processes of XIOS and the output size.

Furthermore, as we have previously mentioned in Section 5, unlike the MF I/O server and the
sequential output scheme, our IFS-XIOS integration does not execute FullPos. This part of the
project is under development, but for analyzing the benefits of using XIOS from a computational
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point of view is enough using the development presented in this document. Therefore, it is
important to keep in mind that the comparison is not fully fair.

We almost used all the default values that prepIFS sets up when a new experiment is created.
We just changed a few parameters, especially the ones related to performance and output.

Basic IFS parameters
Grid type Cubic octahedral reduced Gaussian
Horizontal resolution 1279
Vertical resolution 137
Forecast length 10 days
Time step 600 seconds
Compile environment cdt/16.04
NPROMA size 16
Output frequency 3 hours
2D prognostic fields 1
3D prognositc fields 12
Diagnostics No
Forecast tasks (MPI processes) 702
OpenMP threads per forecast task 6
Hyperthreading Yes

Table 1: Summary of the IFS configuration

The parameters that change between output schemes are the following:

• Sequential output: we do not need additional processes for I/O servers. We do not want
to write data using the Fields Data Base (FDB).

• MF I/O server: we have to specify the number of dedicated processes for I/O, which the
recommended amount by ECMWF is 18. We do want to write data using FDB.

• XIOS: we have to specify the number of dedicated processes for I/O, which the recom-
mended amount is analyzed in later Section 6.4.1. We cannot use FDB, so we disable
it.

The output is characterized by being quite large in size: we are outputting data at a frequency
of 3 hours, while in the operational forecast is at 6 hours. Thus, we are able to stress the schemes
and prove that XIOS works well. In any case, there are real configurations where a frequency
of 3 hours could be used.

We output the following 12 3D prognostic fields:

• U component of wind

• V component of wind

• Temperature
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• Divergence

• Vorticity

• Specific humidity

• Cloud fraction

• Ozone

• Specific rain water content (rain)

• Specific snow water content (snow)

• Specific cloud liquid water content (liquid water)

• Specific cloud ice water content (ice water)

In addition, we also output this 2D prognostic field:

• Surface pressure

It is important to be aware of the output size of this particular configuration because it is
considerably large and it is directly related to the time used for the output process. However,
it depends on the data format:

• GRIB format: files’ size is about 770 GB.

• NetCDF format: files’ size is about 3.2 TB.

This difference in size between both formats is due to compression. While GRIB files are
compressed, netCDF files do not have any kind of compression. However, we could enable
the netCDF files compression in the XIOS configuration, which would not affect the overall
performance because it is done on server side. But, we do not do that because we are only
evaluating I/O aspects.

Finally, in order to evaluate the results, for each case we make the average of three executions.
It is true that when measuring I/O the sampling should be bigger, about 10 runs, because the
variability considerably grows. Nevertheless, we do not do it because of two reasons. The first
one is because the I/O variability is not reflected in the total execution time, since I/O servers
have enough time to ”buffer” it. The second reason is because we are running huge experiments,
so we cannot afford wasting such amount of computing hours.

6.3 Metrics

In order to compare and evaluate the two IFS output schemes against the different optimization
versions of our development, we will use two basic metrics in computer sciences: execution time
and speedup.
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We measured the execution time as the elapsed time from the beginning of the IFS-XIOS
execution to completion.

The speedup measures the relative performance between two systems solving the same problem.
Systems can be of any type: hardware systems, software systems, etc. In our case, we compare
different output schemes for IFS, which always uses the configuration explained in previous
Section 6.2.

We define the speedup as:

S = Tbaseline

Toptimized

Where:

• S is the speedup.

• Tbaseline is the execution time of the case that we take as a reference.

• Toptimized is the execution time of cases that we want to know the relative improvement
against the reference case.

6.4 Results

In this section we will explain all the different tests that we performed to measure our develop-
ment. First of all, in Section 6.4.1 we will show how the optimal number of XIOS servers change
in function of the output size. After that, in Section 6.4.2 we perform a comparison between all
the output schemes that we previously mentioned. In Section 6.4.3 we perform the same type of
comparison, but adding the time needed to convert GRIB to netCDF files. Finally, in Section
6.4.4 we perform a comparison test by adding to non-XIOS schemes the same number of cores
and nodes that XIOS uses.

Figures use some abbreviations for XIOS: v1, v2, v3 and v4. They include the different opti-
mization versions which are in increasing order. For example, v3 includes v1 and v2. The list is
the following:

• XIOS v1: non-optimized version. It is only the IFS-XIOS integration development. It
corresponds to Section 4.

• XIOS v2: it includes the optimization of the NPROMA blocks gather parallelization with
OpenMP threads. It corresponds to Section 5.2.

• XIOS v3: it includes the optimized compilation of XIOS. It corresponds to Section 5.3.

• XIOS v4: it includes the overlapping computation and communication optimization. It
corresponds to Section 5.4.
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6.4.1 Optimal number of XIOS servers

In this test we execute IFS with XIOS under the same conditions, only changing the number of
fields to be output. The purpose is to find the minimum number of XIOS servers needed that
do not increase the total execution time depending on the output size. This means that we are
finding the optimal number of XIOS servers for different number of fields to be output.

XIOS servers consume a considerable amount of memory to maintain the value of variables
needed in some post-processing operations. This means that depending on the volume of the
set of fields, more or less memory is allocated by XIOS servers. This is solved using the memory
of more or less nodes of the supercomputer. Additionally, the more servers are working at the
same time, the more fields can be processed in parallel, avoiding a bottleneck during the output
process. In Figure 26 we use three different output sizes to find the corresponding optimal num-
bers: 12 3D fields, 6 3D fields and 1 3D field. When we output 12 fields, we need 10 servers, with
6 fields we need 5 servers and with 1 field we just need 1 server. It is visible that the number of
needed servers scales in function of the output size.

Figure 26: Optimal number of XIOS servers in function of the output size

There is an important point to mention. For this test we are placing one server per node,
because if we try to fit those number of cores in less nodes, the execution crashes due to lack of
memory. Thus, we can also say that Figure 26 shows the number of nodes needed in function
of the output size. However, note that if we increase the number of XIOS servers per node,
but keeping the needed amount of nodes, the execution successfully finishes spending the same
elapsed time.

Therefore, this figure suggests that XIOS is memory sensitive. As we have explained, XIOS
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consumes a lot of memory because it accumulates data on server side just in case it is needed
to apply time integration filters, i.e., post-processing over a period of time.

6.4.2 Comparison test between different output schemes

In this test we compare the different output schemes that we have available: IFS sequential
output, MF I/O server, different IFS-XIOS optimized versions and IFS with no output. The
fact that I/O schemes are compared with the no output case is to know the maximum achiev-
able speedup because it does not have I/O overhead at all. It is important to remind that: all
executions are done using 702 MPI processes with 6 OpenMP threads each one; and our inte-
grated IFS-XIOS framework does not use FullPos, which is used in the MF I/O server and in
the sequential output, so comparison is not fully fair. In addition, we are going to show results
that take into account the whole execution of IFS-XIOS, this is, from the beginning to the end
of the execution.

Figure 27 shows the execution time of the different schemes. The first column is the sequential
scheme, which takes 9054 seconds. It is considerably slower than the rest of schemes. The second
one, the MF I/O server, takes 7519 seconds. It is a good time compared to no output, which
takes 7356 seconds.

The next four columns are the different XIOS versions. It is visible how each optimization
improves the previous one. The XIOS v1 is only the IFS-XIOS integration, which takes 7773
seconds. It is faster than the sequential output, but slower than the MF I/O server. The
next one, XIOS v2, parallelizes the NPROMA blocks gather using OpenMP threads. This
optimization avoids that only the OpenMP master thread works while the rest of threads are
idle. It takes 7705 seconds, which is a reduction of 68 seconds regarding the XIOS v1.

After that, the XIOS v3 uses the optimized compilation of XIOS. It is very important to reduce
both client and server execution time, especially if it is necessary to run post-processing, which
typically implies a lot of computation. The execution time is improved by 76 seconds with
regard to XIOS v2, taking 7629 seconds.

Finally, the most optimized version, XIOS v4, re-orders the three necessary steps to perform
output: update calendar, NPROMA blocks gather and send fields. The send fields step is per-
formed in the IFS physics computation, taking advantage that there are not communications
at all. Thus, it is possible to achieve better overlapping between XIOS communication and
IFS computation. The execution time takes 7507 seconds, 122 seconds faster than the previous
XIOS v3. It is also slightly faster than the MF I/O server (12 seconds), and much more than
the sequential output (1547 seconds). In addition, it is only 151 seconds slower than no output.
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Figure 27: Comparison of the execution time of different output schemes

Figure 28 shows the speedup of the same previous comparison. The maximum achievable
speedup is 1.231x, i.e., a 23.1% faster than the sequential output. Both MF I/O server and
XIOS v4 execution time improvements are 20.4% and 20.6% respectively.

Comparing the sequential output (9054 seconds) and the no output tests (7356 seconds), it is
easy to check that the output process requires an average of 1698 seconds, which represents a
23% more of the execution time of IFS. However, thanks to the most optimized version of the
IFS-XIOS integration, this time is reduced from 1698 to 151 seconds, which represents only a
2% of the execution time of IFS, achieving that almost all the output process is hidden with the
IFS computation.
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Figure 28: Comparison of the speedup of different output schemes

6.4.3 Comparison test adding the GRIB to netCDF post-processing

This test is the same as the previous one (Section 6.4.2), but with the additional cost of convert-
ing GRIB files to netCDF files. This cost is only added in sequential output and MF I/O server
schemes, since they are the ones that write in GRIB format. The format conversion used is the
same that EC-Earth uses for its experiments. In particular, GRIB files are serially converted to
netCDF files, this is, one file at a time. Note that we do not include the no output case, which
does not have neither GRIB format nor netCDF format, since it does not generate data.

This test is useful to know the potential benefit of using XIOS to avoid the costly GRIB to
netCDF post-processing.

Figure 29 shows a comparison between the different output schemes, where the time needed to
convert GRIB files to netCDF files is taken into account. The post-processing time needed for
the conversion is really huge, about 13680 seconds (3.8 hours). It is much more slower than the
simulation itself.

The execution time of the sequential output scheme is increased from 9054 seconds to 22734 sec-
onds, and for the MF I/O server from 7519 seconds to 21199 seconds. It represents an increase
of 151.1% and 181.9% respectively.
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Figure 29: Comparison of the execution time of different output schemes, where both sequential
output and MF I/O server have the additional cost of converting GRIB to netCDF files

Figure 30 shows the speedup of the same previous comparison. It is considerable the speedups
that XIOS achieves in all its optimization versions: 2.92x in v1, 2.95x in v2, 2.97x in v3 and
3.02x in v4.

It is really evident that if we take into account both model and post-processing tasks, the benefit
of using XIOS compared to the current I/O schemes is huge.
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Figure 30: Comparison of the speedup of different output schemes, where both sequential output
and MF I/O server have the additional cost of converting GRIB to netCDF files

6.4.4 Comparison test with additional computational resources

Finally, we perform a comparison with additional computational resources between the sequen-
tial output scheme and the most optimized version of IFS-XIOS, i.e., XIOS v4. The idea is to
use in both cases, firstly, the same amount of cores, and secondly, the same amount of nodes.
Thus, we guarantee that we compare cases using the same amount of computational resources.
Furthermore, at the end there is the same comparison test, but also taking into account the
GRIB to netCDF conversion cost for the sequential output scheme.

It is important to keep in mind that each Cray XC40 node has 36 physical cores, so using
hyperthreading 72 threads. In our case, we are running 12 MPI processes per node, where each
one has 6 OpenMP threads. Thus, we are completely fulfilling nodes.

We always take as a reference the optimal amount of XIOS servers (and nodes) that will be
added to the other cases. Since we are outputting 12 3D fields, we use 10 XIOS servers spread
along 10 nodes. Therefore, those additional resources used by XIOS, are added to the sequential
output scheme as follows: if using the same amount of cores, we use 10 additional cores to run
IFS (702 + 10 = 712). On the contrary, if using the same amount of nodes, we use 120 additional
cores to run IFS (702 + 120 = 822).

Note that we do not include the MF I/O server. This is because of two reasons. Firstly, if
we want to use 10 cores as dedicated I/O processes, the execution crashes since there are not
enough resources. The minimum amount is 18, the default value. And secondly, if we want to
use 10 nodes to place I/O processes, we cannot set it up because I/O processes are internally
distributed by IFS. It is not possible to choose the geometry of the parallel job through aprun.
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Figure 31 shows the execution time comparison of the two evaluated schemes. The first case
is the sequential output. It has a considerable improvement using the same amount of nodes,
where execution time is reduced from 9054 seconds to 8282 seconds. The second case is the
XIOS v4, where the execution time is always kept to 7507 seconds, because it is the reference
case regarding the amount of resources.

Figure 31: Comparison test with additional computational resources of the execution time of two
different output schemes. In blue they are using the original amount of resources, in orange they
are using the same amount of cores, and in yellow they are using the same amount of nodes

From previous Figure 31 we compute the speedup of Figure 32. It illustrates how the XIOS v4
scheme achieves a lower speedup when the sequential output scheme uses more computational
resources.
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Figure 32: Speedup of XIOS v4 against the sequential output scheme with additional computa-
tional resources. In blue the original amount of resources, in orange the same amount of cores,
and in yellow the same amount of nodes

Figure 33 illustrates the same execution time comparison of previous Figure 31, but also taking
into account the execution time of converting GRIB to netCDF files. In this scenario, the
benefit of using more computational resources for the sequential output scheme is less significant,
because the increase added by the format conversion is really big.
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Figure 33: Execution time comparison test with additional computational resources and GRIB
to netCDF conversion cost of two different output schemes. In blue they are using the original
amount of resources, in orange they are using the same amount of cores, and in yellow they are
using the same amount of nodes

Figure 34 shows the speedup computed from the previous figure, where it is evident that XIOS
offers a considerable improvement with regard to the sequential output scheme. The speedup of
XIOS v4 is 3.00x using the same amount of cores and 2.92x using the same amount of nodes.
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Figure 34: Speedup of XIOS v4 against the sequential output scheme with additional computa-
tional resources and GRIB to netCDF conversion cost. In blue the original amount of resources,
in orange the same amount of cores, and in yellow the same amount of nodes
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7 Conclusions and future work

7.1 Conclusions

In this project we have integrated XIOS into IFS with a twofold objective: reduce the total exe-
cution time of the model and reduce the workflow’s critical path by using online post-processing.
In addition, we had a secondary objective which was to increase the usability of IFS by using
an easier output configuration file compared to the current approach.

In order to achieve the objectives, we have presented a development which is characterized by
being very easy to use. IFS initializes, sets up and finalizes XIOS through three subroutines.
Then, we have designed a scheme to write data at the end of each output time step. This
output scheme is made of three steps: update calendar, NPROMA blocks gather and send
fields. This first development already improved the execution time with regard to the sequential
output scheme, despite of not being optimized. The execution time takes 7773 seconds, while
the sequential output takes 9054 seconds, which adds a 23% of time to the execution of IFS.
However, note that unlike the MF I/O server and the sequential output scheme, the integrated
IFS-XIOS version does not execute FullPos, which is needed to output and post-process correct
data. This is currently an ongoing task, but for analyzing the benefits of using XIOS from a
computational point of view, it is enough with the work presented in this document.

After that, we have applied several optimization techniques to improve the bottlenecks that we
detected in the performance analysis.

In the first optimization we have used OpenMP threads to parallelize the NPROMA blocks
gather. Although it does not give a large improvement, it is important to not have threads in
idle, while only works the master thread. This optimization would be especially beneficial when
having larger subdomains with less MPI processes and more OpenMP threads per MPI process
to ensure a good scalability for any configuration of future developments. The execution time
is reduced 68 seconds with regard to the first development.

The second optimization is an improvement in the XIOS compilation. After sorting out all
the issues that we were having, we achieved to compile XIOS using the -O3 optimization flag.
Not surprisingly, there is an improvement in the execution time, which is reduced by 76 seconds
regarding the previous optimization. This proves that it is important to compile external libraries
using the best optimization flags of the compiler. Although this could seem trivial, a non-
optimized compilation of external libraries could be a bottleneck for the scalability of a model.

The last optimization is the most beneficial in terms of computational performance. We have
used more sophisticated tools such as Extrae and Paraver to find what could be improved. We
have realized that there was not a real overlap in the computation and communication of IFS
and XIOS respectively, so we have designed a new output scheme to re-arrange the steps and
achieve an improved overlap. In this new scheme, the three steps of the first output scheme
are split and placed along the IFS time step. This optimization takes 7507 seconds, improving
the execution time by 122 seconds. Thanks to this last optimization, it is even slightly faster
than the MF I/O server, which takes 7519 seconds. Furthermore, it is important to mention
that this optimization, which also includes the previous ones, is only 151 seconds slower than
IFS without outputting data at all, which represents only a 2% of the execution time of IFS.
Within 151 seconds, IFS outputs through XIOS 3.2 TB of data. This optimization proves
that the use of asynchronous communications to overlap with computation is sometimes not
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enough. In some cases, an additional study is needed to detect in which areas computation and
communication can be effectively overlapped, taking into account other communication stages
along the complete execution.

We have also considered other optimization techniques such as vectorization with SIMD in-
structions, memory affinity and derived MPI Datatypes. However, we have not implemented
them due to different reasons: the vectorization of the code that we would have implemented,
it is already done by the compiler; the memory affinity improvement is already in use in IFS
(however, we have proved that its use is very important for the performance of the execution);
and the derived MPI Datatypes are not possible to be used, since data is sent to XIOS through
Fortran subroutines.

When we also take into account the post-processing task to compare performance results, the
benefit of using XIOS becomes enormous. In both sequential output and MF I/O server schemes
is necessary to convert GRIB files to netCDF files, which are serially converted. It takes 13680
seconds (3.8 hours), which increases the execution time of the sequential scheme up to 22734
seconds and 21199 seconds in the MF I/O server. Our most optimized version is a 202% faster
than the sequential output scheme and a 182% faster than the MF I/O server. Thus, we
have implemented an scalable development that will address the I/O issue that is limiting the
computational performance of IFS within EC-Earth. It represents a first step in EC-Earth that
will considerably reduce the total execution time of large experiments, as well as it will increase
the efficiency. This does not only imply to save thousands of computing hours, but also storage
space because we will only store processed data ready to be used, instead of a huge amount of
temporary raw data.

We have actively worked, discussed and collaborated with two European institutions, ECMWF
and NLeSC, to succeed in the completion of this project. ECMWF is interested in this work
because they will distribute OpenIFS with XIOS as an optional I/O scheme.

Furthermore, the EC-Earth community is very interested in this work, because it is one of the
key developments that need to be implemented for a future major release of EC-Earth. Some
of the institutions involved in this community are BSC, KNMI, SMHI, etc.

7.2 Future work

In order to keep improving this project, there are several tasks that will be gradually and
sequentially implemented in the future by different institutions:

• As we have previously mentioned, it is needed to use FullPos to output correct data
and apply vertical interpolations that are not currently supported by XIOS. However, we
have to ensure a user-friendly output configuration file because choosing an inappropriate
mechanism to set up both FullPos and XIOS can lead to a usability loss. This task is
currently ongoing.

• All the work done for IFS, will be ported to OpenIFS.

• At that time, XIOS will be already integrated with OpenIFS and NEMO, so it will be
necessary to adapt EC-Earth components to generate on-line diagnostics through XIOS.
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Acronyms

ADIOS ADaptable I/O System.

AOGCM Atmosphere-Ocean Global Circulation Model.

API Application Programming Interface.

BSC Barcelona Supercomputing Center.

CAM Community Atmosphere Model.

CDI-pio CDI with parallel I/O.

CDT Cray Developer Toolkit.

CeCILL CEA CNRS INRIA Logiciel Libre.

CFIO Climate Fast Input/Output.

CMIP Coupled Model Intercomparison Project.

CMOR Climate Model Output Rewriter.

CPU Central Processing Unit.

ECMWF European Centre for Medium-Range Weather Forecasts.

ESM Earth System Modelling.

FDB Fields Data Base.

GPU Graphic Processing Unit.

GRIB General Regularly-distributed Information in Binary form.

H2020 Horizon 2020.

HDF Hierarchical Data Format.

HPC High Performance Computing.

I/O Input/Output.

IFS Integrated Forecasting System.

ILP Instruction Level Parallelism.

IPSL Institute Pierre Simon Laplace.

KNMI Koninklijk Nederlands Meteorologisch Instituut.

MF Météo-France.
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MIPS Million Instructions Per Second.

MPI Message Passing Interface.

MPMD Multiple-Program Multiple-Data.

NEMO Nucleus for European Modelling of the Ocean.

netCDF Network Common Data Format.

NLeSC Netherlands eScience Center.

NUMA Non-Uniform Memory Access.

NWP Numerical Weather Prediction.

OpenMP Open Multi-Processing.

OST Object Storage Target.

PIO Parallel I/O library.

POSIX Portable Operating System Interface.

PRIMAVERA PRocess-based climate sIMulation: AdVances in high-resolution modelling and
European climate Risk Assessment.

SIMD Single Instruction, Multiple Data.

SMHI Swedish Meteorological and Hydrological Institute.

XIOS XML Input/Output Server.

XML Extensible Markup Language.
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