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Abstract  

The ability of a data assimilation system to deal effectively with nonlinearities arising from the prognostic model 
or the relationship between the control variables and the available observations has received a lot of attention in 
theoretical studies based on very simplified test models. Less work has been done to quantify the importance of 
nonlinearities in operational, state-of-the-art global data assimilation systems. In this paper, we analyse the 
nonlinear effects present in ECMWF 4D-Var and evaluate the ability of the incremental formulation to solve the 
nonlinear assimilation problem in a realistic NWP environment. We find that nonlinearities have increased over 
the years due to a combination of increased model resolution and the ever-growing importance of observations 
that are nonlinearly related to the state. Incremental 4D-Var is well suited for dealing with these nonlinear effects, 
but at the cost of increasing the number of outer loop relinearisations. We then discuss strategies for 
accommodating the increasing number of sequential outer loops in the tight schedules of operational global NWP. 
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1 Introduction  
The importance of nonlinear effects has been recognised since the early days of the development of 4D-
Var (e.g., Gauthier, 1992; Rabier and Courtier, 1992; Miller et al., 1994; Pires et al., 1996). The presence 
of nonlinearities in either the model or the observations can potentially cause significant deviations from 
the usual Gaussian distribution assumed to describe observation and background errors in the definition 
of the 4D-Var cost function. This, in turn, translates into a more complex topology of the cost function 
and the potential for multiple minima (e.g., Pires et al., 1996; Hoteit, 2008). In these conditions, finding 
the global minimum of the 4D-Var cost function for realistic numerical weather prediction (NWP) 
applications becomes computationally unaffordable and, even if it were possible, the interpretation and 
usefulness of the result in the case of multi-modal error distributions becomes unclear in a deterministic 
analysis context (Lorenc and Payne, 2007). 

In order to make the variational problem computationally tractable and mathematically well-posed, 
simplifications are required. One idea would be to reduce the dimensionality of the control vector used 
in the minization, for example limiting it to the subspace where dynamical instabilities develop during 
data assimilation cycle (Trevisan and Uboldi, 2004; Carrassi et al, 2008; Trevisan et al, 2010). Another 
approach starts from recognising that the use of a linear model and linear observation operators leads to 
strictly quadratic cost functions, which bring two major benefits: a) it guarantees the convergence of the 
minimisation algorithm to the global minimum and b) it allows the use of efficient, gradient-based 
iterative minimisation algorithms (Fisher, 1998). This consideration has spurred research in NWP 
applications of variational methods towards perturbative solution algorithms, where the full nonlinear 
minimization problem is approximated as a series of quadratic cost functions obtained by repeated 
linearizations around progressively more accurate guess values of the solution. This idea, based on the 
general Gauss-Newton method for the solution of nonlinear least squares problems (Björck, 1996), was 
first introduced in the meteorological literature by Courtier, Thépaut and Hollingsworth, 1994 (CTH in 
the following) as “Incremental 4D-Var”. In that paper, the main stated objective of incremental 4D-Var 
was the reduction of the computational costs of full 4D-Var in order to make it feasible for operational 
application. Its ability to deal with weak nonlinearities was also noted and subsequently investigated in 
simplified models, particularly in relation to the length of the assimilation window and the global 
convergence properties of the algorithm (e.g., Tanguay et al., 1994; Laroche and Gauthier, 1998). 

After the operational implementation of incremental 4D-Var at ECMWF (Rabier et al., 2000) and, later, 
in other major global NWP Centres (Kadowaki, 2005; Rosmond and Xu, 2006; Gauthier et al., 2007; 
Rawlins et al., 2007) the possibility arose to address in realistic NWP settings still open questions about 
the limits of applicability of 4D-Var in nonlinear situations. A series of studies (Andersson et al., 2005; 
Radnòti et al., 2005; Trémolet, 2004, 2007) conducted with the ECMWF Integrated Forecasting System 
(IFS) provided answers to some of these questions in the context of the ECMWF operational system of 
the time. These studies emphasised the importance of the consistency between the nonlinear and 
linearised evolution of the analysis increments during the assimilation window for the global 
convergence of the incremental 4D-Var. This, in turn, was shown to require the availability of accurate 
linearised models, and the need to run inner and outer loops with not too large discrepancies in terms of 
spatial resolution and time step (a ratio of three between the outer and inner loop resolutions was found 
to give satisfactory results). As there is no guarantee of global convergence of the incremental 4D-Var 
algorithm, the aforementioned studies also stressed the importance of regularly re-evaluating the 
nonlinearity issues in future operational systems.  



Nonlinear effects in 4D-Var   
 
 

 
Technical Memorandum No.828 3 

 

From the time of these investigations, the operational ECMWF IFS has changed considerably. From the 
perspective of the validity of the linearity assumptions in the incremental formulation, two changes are 
particularly relevant: a) the increase in resolution at both outer loop and inner loop level and b) the 
introduction of a very large number of humidity, cloud and precipitation-sensitive satellite observations 
in the analysis system (Geer et al., 2017).  

In terms of spatial resolution, the effective grid spacing of the IFS has gone from approx. 40 Km (TL511, 
i.e. spectral Triangular truncation 511 with a Linear grid) to approx. 9 Km (TCo1279, spectral Triangular 
truncation 1279 with a Cubic grid; see Malardel et al., 2016, for more details), for the 4D-Var outer 
loops, and from approx. 130 Km (TL159) to approx. 50 Km (TL399) for the inner loops. Thus, 
nonlinearities are expected to play a larger role in the current IFS, also in view of the fact that the ratio 
between the resolutions of the outer and inner loops of the minimization has increased from approx. 3.2 
to 5.5. In terms of observation usage, the increase in the number and influence of humidity, cloud and 
precipitation-sensitive observations can also be expected to expose nonlinear effects connected to the 
way their observation operators respond to forecasted humidity and precipitation structures. Some of 
these issues were already described at the time of the introduction of the “all-sky” framework for the 
assimilation of microwave imagers sensitive to humidity and precipitation (Bauer et al., 2010), but at 
that time the number and influence of these observation types on the 4D-Var analysis was relatively 
small. Currently, however, all-sky observations are one of the most important components of the 
observing system used operationally at ECMWF (Geer et al., 2017) and it is thus important to understand 
the capabilities and limitations of 4D-Var to deal with this type of nonlinearities. 

Given the motivation above, the remainder of this paper is organised as follows. In Sec. 2, we briefly 
review the incremental 4D-Var algorithm in order to highlight the hypotheses underlying the tangent 
linear approximation and the mathematical basis of the outer loop iterations. In Sec. 3 evidence of 
nonlinear effects in current ECMWF 4D-Var is presented, from both an observational and a model 
perspective. In Sec. 4, we evaluate how effective incremental 4D-Var is in dealing with both observation 
and model nonlinearities. Sec. 5 addresses the question of how important the ability to run outer loops 
is in the current ECMWF data assimilation system, in terms of both analysis and forecast skill. These 
results and their implication for data assimilation strategy at ECMWF and elsewhere are discussed in 
Sec. 6.    

 

2 Algorithmic Aspects  
The aim of variational data assimilation is to determine the model trajectory that best fits in a least square 
sense the observations available during a given time window. This concept naturally leads to the 
formulation of the standard strong constraint 4D-Var cost function: 

𝐽𝐽(𝐱𝐱0) =
1
2

(𝐱𝐱0 − 𝐱𝐱𝑏𝑏)T𝐏𝐏𝑏𝑏−1(𝐱𝐱0 − 𝐱𝐱𝑏𝑏) +
1
2
��𝐲𝐲𝑘𝑘 − 𝐺𝐺𝑘𝑘(𝐱𝐱0)�T𝐑𝐑𝑘𝑘−1�𝐲𝐲𝑘𝑘 − 𝐺𝐺𝑘𝑘(𝐱𝐱0)�
𝐾𝐾

𝑘𝑘=0
= 𝐽𝐽𝐵𝐵(𝐱𝐱0) + 𝐽𝐽𝑂𝑂(𝐱𝐱0)                                                  (1) 

In (1) x0 is the control vector at the start of the assimilation window; xb and 𝐏𝐏𝑏𝑏−1 are the background and 
its expected error covariance matrix; 𝐲𝐲𝑘𝑘and Rk are the set of observations presented to the analysis in 
the k sub-window and their expected error covariances; and Gk is a generalised observation operator (or 
forward model) that produces the model equivalents of the observations yk by first integrating the 
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prognostic model from t0 to tk and then applying the standard observation operator Hk to the propagated 
fields, i.e.: 

𝐺𝐺𝑘𝑘 = 𝐻𝐻𝑘𝑘°𝑀𝑀𝑡𝑡0→𝑡𝑡𝑘𝑘                                                                                   (2) 

The formulation (1) represents the general nonlinear weighted least square solution of the assimilation 
problem using the forecast model as a strong constraint. Problem (1) cannot however be solved 
efficiently by standard optimal control methods for realistic numerical weather prediction (NWP) data 
assimilation systems, given the size of the control vector x0 (O(109)). A possible solution, first proposed 
in CTH, 1994, under the name of “Incremental 4D-Var”, is to simplify the solution of (1) through the 
application of an approximated form of the Gauss-Newton method (Lawless et al., 2005; Gratton et al., 
2007). This consists of approximating the minimization of the nonlinear cost function (1) as a sequence 
of minimizations of quadratic cost functions defined in terms of perturbations around a sequence of 
progressively more accurate trajectories (i.e., nonlinear model integrations). The cost function linearised 
around a guess trajectory xg can be expressed as an exact quadratic problem in terms of the increment 
at the initial time δ𝐱𝐱0: 

𝐽𝐽(δ𝐱𝐱0) =
1
2 �
𝛿𝛿𝐱𝐱0 + 𝐱𝐱0

𝑔𝑔 − 𝐱𝐱𝑏𝑏�
T𝐏𝐏𝑏𝑏−1�𝛿𝛿𝐱𝐱0 + 𝐱𝐱0

𝑔𝑔 − 𝐱𝐱𝑏𝑏�

+
1
2
��𝐝𝐝𝑘𝑘 − 𝐆𝐆𝑘𝑘(δ𝐱𝐱0)�T𝐑𝐑𝑘𝑘−1�𝐝𝐝𝑘𝑘 − 𝐆𝐆𝑘𝑘(δ𝐱𝐱0)� = 𝐽𝐽𝐵𝐵(𝛿𝛿𝐱𝐱0) + 𝐽𝐽𝑂𝑂(𝛿𝛿𝐱𝐱0)
𝐾𝐾

𝑘𝑘=0

           (3) 

In Eq. (3) 𝐝𝐝𝑘𝑘 =  𝐲𝐲𝑘𝑘 − 𝐺𝐺𝑘𝑘�𝐱𝐱0
𝑔𝑔� are the observation departures around the latest model trajectory and 

𝐇𝐇𝑘𝑘𝐌𝐌𝑡𝑡0→𝑡𝑡𝑘𝑘 is the linearisation of the generalised observation operator around the defined trajectory. 

In the observation part of the cost function, the so-called “tangent linear (TL) approximation” has been 
made in going from (1) to (3): 

𝐲𝐲𝑘𝑘 − 𝐺𝐺𝑘𝑘(𝐱𝐱0) = 𝐲𝐲𝑘𝑘 − 𝐺𝐺𝑘𝑘�𝐱𝐱0
𝑔𝑔 + δ𝐱𝐱0�

= 𝐲𝐲𝑘𝑘 − 𝐺𝐺𝑘𝑘�𝐱𝐱0
𝑔𝑔� − 𝐆𝐆𝑘𝑘(δ𝐱𝐱0) −

1
2

 (δ𝐱𝐱0)T �
∂𝐆𝐆𝑘𝑘
∂𝐱𝐱

�
𝐱𝐱𝑔𝑔

(δ𝐱𝐱0) − 𝑂𝑂(‖δ𝐱𝐱0‖3) 

                              ≈ 𝐲𝐲𝑘𝑘 − 𝐺𝐺𝑘𝑘�𝐱𝐱0
𝑔𝑔� − 𝐆𝐆𝑘𝑘(δ𝐱𝐱0)                                         (4) 

In the Taylor expansion in Eq. (4), terms of 𝑂𝑂(‖𝛿𝛿𝐱𝐱0‖2) and higher are neglected (note that if (4) is 
exactly satisfied, then Eq. (3) is equivalent to Eq. (1)). This approximation, as first noted in Lawless et 
al, 2005, is equivalent to the standard approximation used in the Gauss-Newton optimization algorithm, 
i.e. neglecting the second order derivatives of 𝐺𝐺𝑘𝑘 in the Hessian of the cost function: 

∇2𝐽𝐽 = 𝐁𝐁−1 + �(𝐆𝐆𝑘𝑘)T𝐑𝐑𝑘𝑘−1(𝐆𝐆𝑘𝑘)
𝐾𝐾

𝑘𝑘=0

−� �
∂𝐆𝐆𝑘𝑘
∂𝐱𝐱

�
𝐱𝐱𝑔𝑔

𝐾𝐾

𝑘𝑘=0
𝐑𝐑𝑘𝑘
−1 �𝐲𝐲𝑘𝑘 − 𝐺𝐺𝑘𝑘�𝐱𝐱0

𝑔𝑔�� ≈ 

𝐁𝐁−1 + ∑ (𝐆𝐆𝑘𝑘)T𝐑𝐑𝑘𝑘−1(𝐆𝐆𝑘𝑘)𝐾𝐾
𝑘𝑘=0   .                                                                                  (5) 

The validity of the tangent linear approximation is thus based on whether either the increments δ𝐱𝐱0 are 
in some sense small or the dependence of the linearization of 𝐺𝐺𝑘𝑘   (i.e., 𝐆𝐆𝑘𝑘 = 𝐇𝐇𝑘𝑘𝐌𝐌𝑡𝑡0→𝑡𝑡𝑘𝑘) to the reference 
trajectory is negligible. Concerning the first aspect, we only note here that the size of analysis increments 
is, to first order, a linear function of observation departures. Thus, the size of departures need to be small 
with respect to the observation and background errors used in the analysis update for the TL 
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approximation to hold (The interested reader can find further details and examples in Bonavita et al., 
2017b). The other aspect affecting the validity of the TL approximation relies on an implicit linearity 
assumption of both the forecast model and the observation operator in a neighbourhood of the reference 
trajectory. Experience at ECMWF indicates that there is a clear sensitivity of both the linearised 
observation operator and the linearised model to the linearisation state (e.g., Bauer et al., 2010; Janisková 
and Lopez, 2013). It is thus relevant to revisit the roles of model and observation nonlinearities in the 
current operational ECMWF 4D-Var implementation and validate the effectiveness of the incremental 
4D-Var method in dealing with these nonlinearities. 

Other, possibly less well-known, sources of nonlinearities in the ECMWF incremental 4D-Var 
formulation stems from the variational quality control (VarQC) of the observations and the nonlinear 
change of variable used for the humidity analysis. The VarQC algorithm is based on the Huber norm 
(Tavolato and Isaksen, 2015) and has the effect of making the observation error matrix R a function of 
the current departure 𝐝𝐝𝑘𝑘 and thus of the reference state. However, as it is currently applied to 
conventional observation only, its impact on the linearity of the minimisation is limited. The other source 
of nonlinearity arises from the nonlinear change of variable used in the humidity analysis (Holm et al., 
2002), which implies that also the 𝐽𝐽𝐁𝐁 part of the cost function in Eq. (3) is not a purely quadratic function 
of the initial increment δ𝐱𝐱0 and, consequently, the gradient of 𝐽𝐽𝐁𝐁with respect to the initial increment is 
not linear in δ𝐱𝐱0 . Consistently with the incremental 4D-Var philosophy, this is handled by a linear 
update of the humidity control variable in the quadratic cost function (3), followed by a nonlinear update 
of the humidity field at the outer loop level to provide the initial state for the new reference trajectory. 
The nonlinear effects connected with the humidity control variable are intimately linked with the usage 
of the all-sky observations, which provide the vast majority of humidity sensitive observations, and will 
be discussed in that context. 

 

3 Evidence of nonlinear effects in 4D-Var 

3.1 The role of the model  

Model nonlinearities affect the 4D-Var solution in two main ways. First, the more nonlinear the high-
resolution trajectory solution is, the spatially noisier the low-resolution interpolated linearization state 
for the 4D-Var inner loops becomes. This roughness of the interpolated trajectory increases when 
differences between the timesteps and resolutions of the inner loops and the trajectory become larger. 
Second, the tangent linear evolution differs more from the nonlinear solution as nonlinearities increase. 
One measure of the degree of nonlinearity (Rabier and Courtier, 1992) is to take the difference between 
the nonlinearly and linearly evolved increments in the last minimization: 

 𝑀𝑀(𝒙𝒙𝑛𝑛−1 + 𝛿𝛿𝒙𝒙𝑛𝑛) − (𝑀𝑀(𝒙𝒙𝑛𝑛−1) + 𝐌𝐌𝛿𝛿𝒙𝒙𝑛𝑛)                                                                                                                    (6) 

and the globally averaged profile of the standard deviation of this quantity is shown in Fig. 1 for selected 
years from 2004 to 2017. Over the years, there has been an increase in the resolution of the trajectory 
and the inner loops and the gap in resolution between the two has increased. This has resulted in 
increased differences, which we interpret as increased nonlinearity due to the combination of increased 
model resolution and resolution differences between the inner loop and the trajectory. One way to 
counteract the nonlinearity that comes with resolution increases is to shorten the length of the 
assimilation window. This can be achieved either by very short windows or by the use of overlapping 
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assimilation windows. In this second case the reduction in nonlinearity is realised by reducing the size 
of the analysis increments 𝛿𝛿𝒙𝒙𝑛𝑛 as each new window will start from a first guess trajectory that has 
already seen the observations in the overlapped part of the window. 

 

Figure 1 Globally averaged profiles of historical ECMWF 4D-Var differences 𝑀𝑀�𝒙𝒙𝒏𝒏−𝟏𝟏 + 𝜹𝜹𝒙𝒙𝒏𝒏� −
�𝑀𝑀�𝒙𝒙𝒏𝒏−𝟏𝟏�+ 𝐌𝐌𝜹𝜹𝒙𝒙𝒏𝒏� in the last minimization 9 hours into the 12h assimilation window for vorticity 
(left) and divergence (right) in 2004, 2008, 2013 and 2017. Over the years, the resolution and number 
of inner and outer loops have increased from 60-level TL511/TL95-TL159 in 2004 to 137-level 
TCo1279/TL255-TL319-TL399 in 2017. 

 

3.2 The role of the observations  

The significance of nonlinearities in the observation operators can be estimated using statistics from the 
Ensemble of Data Assimilations (EDA, Isaksen et al., 2010) system which is run operationally at 
ECMWF. Each ensemble member is initialised using a perturbed model state with perturbations drawn 
from a distribution with zero mean. For linear observation operators and Gaussian perturbations, the 
ensemble mean of the model equivalents provided by the observation operators is expected to be close 
to the unperturbed control member (in fact, it should match it exactly in the limit of infinite ensemble 
size): 

1
𝑁𝑁
� 𝐺𝐺𝑘𝑘

𝑁𝑁

𝑖𝑖=0
(𝐱𝐱0 + 𝛿𝛿𝑥𝑥𝑖𝑖) =

1
𝑁𝑁
� 𝐺𝐺𝑘𝑘

𝑁𝑁

𝑖𝑖=0
(𝐱𝐱0) +

1
𝑁𝑁
� 𝐺𝐺𝑘𝑘

𝑁𝑁

𝑖𝑖=0
(𝛿𝛿𝐱𝐱𝑖𝑖) = 

𝐺𝐺𝑘𝑘(𝐱𝐱0) + 𝐺𝐺𝑘𝑘�∑ 𝛿𝛿𝐱𝐱𝑖𝑖𝑁𝑁
𝑖𝑖=0 � ≅ 𝐺𝐺𝑘𝑘(𝐱𝐱0)                  (7) 

Figures 2a-d show the relationship between the ensemble mean model equivalent value and the model 
equivalent values in the unperturbed control member for different observation types. For observations 
sensitive to tropospheric temperature, such as the Advanced Microwave Sounding Unit A (AMSU-A) 
channel 6 (Fig 2a) and radiosonde temperature observations (Fig 2b), a strong linear relationship holds, 
indicating that nonlinear effects in the observation operators are negligible. However, operators 
associated with observations sensitive to humidity and cloud show more significant nonlinear behaviour. 
For example, the Advanced Technology Microwave Sounder (ATMS) channel 20 (Fig 2c) is sensitive 
to humidity and the Advanced Microwave Scanning Radiometer 2 (AMSR-2) channel 11 (Fig 2d) is 
sensitive to cloud liquid water. 
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Figure 2. Ensemble mean model equivalent G(x) (x-axis) against control member model equivalent G(x) 
(y-axis) for: (a) AMSU-A channel 6 in clear sky locations; (b) radiosonde temperature; (c) ATMS 
channel 20 (clear sky) and (d) ASMR-2 channel 11 observations (all-sky). 

 

4 Dealing with nonlinearities through the incremental approach 
The incremental approach to 4D-Var (CTH, 1994) reduces the resolution of the inner loops to make the 
solution more affordable. Observation departures are calculated at high resolution and then the high-
resolution trajectory is truncated and interpolated to the resolution of the inner loop for each timestep of 
the low-resolution minimization (Trémolet, 2004). At the end of the minimization, the increments are 
projected back to the high resolution and added to the previous trajectory at the start of the assimilation 
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window. This process is repeated for all minimizations, which can be at different resolutions, starting 
with the lowest resolution to capture the larger scales and increasing the resolution in later minimizations 
to extract more detailed information from the observations (Veerse and Thépaut, 1998). 

 

4.1 Impact diagnostics in observation space  

Bauer et al (2010) discussed how the difference in departures at the end of each minimisation step, and 
those in the subsequent nonlinear trajectory step (i.e., 𝛿𝛿𝑑𝑑𝑘𝑘 = 𝑑𝑑𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑑𝑑𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) indicate the 
presence of nonlinearities in the system. Figure 3 shows the standard deviation of the guess departures 
at each stage of the operational 4D-Var for the AMSR-2 channel 10, which is sensitive to water vapour 
(see Sec. 5 for details of the operational 4D-Var setup). It can be seen that each minimisation improves 
the fit between the model trajectory and the observations. However, the standard deviation in each 
nonlinear trajectory step is consistently higher than that at the end of the previous minimisation. This is 
to be expected because of the resolution difference between nonlinear and linearised models and also 
due to the fact that nonlinear processes cannot be represented by the linear model and operators used in 
the minimisations.  

 

Figure 3. Standard deviation of departures for AMSR-2 channel 10 in the nonlinear trajectories (circles) 
and at the end of the minimisation of the linearised cost function (triangles) for each outer loop of 4D-
Var. Note how the nonlinear and linearised departure standard deviations should coincide in the linear 
case. The average background error standard deviation in observation space for this type of 
observations is 3.4 K.  Results from a single cycle from the ECMWF operational assimilation system. 
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Figure 4 plots the correlation coefficient and standard deviation of these differences at each outer loop, 
demonstrating that nonlinearities become smaller at each successive outer loop. For “linear” observation 
types such as radiosonde temperature and AMSU-A channel 6, the nonlinearities are less significant 
than for ATMS channel 20 (which is sensitive to humidity). 

 

Figure 4. Taylor diagram showing the correlation (azimuthal angle) and standard deviation (distance 
from the origin) of the differences in the departures [K] between the nonlinear trajectory and linear 
minimisation steps for each outer loop. Results are shown for satellite brightness temperature 
observations (AMSU-A channel 6, ATMS channel 20) and radiosonde temperature observations. 

As expected, the departures for observations sensitive to cloud and humidity show increased nonlinear 
impacts. Figure 5 shows results from AMSR-2 channel 11 categorized using estimates of cloudiness 
from both the observations and the model fields (Geer and Bauer, 2011). It can be seen that the linear 
assumption holds less well for observations in cloudy regions compared to those in areas of clear sky. 
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Figure 5. As Fig. 4 but showing results from AMSR-2 channel 11 categorising observations by those in 
clear sky regions and those impacted by cloud.   

4.2 Impact diagnostics in model space 

 A clear indicator of the success or otherwise of the incremental strategy is the size of the analysis 
increments produced by the linearised cost function (3) during successive outer loop iterations. For a 
well-behaved incremental 4D-Var converging towards the solution of the nonlinear cost function (1), 
successive analysis increments are expected to become smaller, reflecting the hypothesis that successive 
first guess trajectories provide increasingly accurate descriptions of the flow. This hypothesis is 
supported by the experimental results shown in Fig. 6, where we present the vertical profiles of the 
standard deviations of the analysis increments of vorticity (left panel) and temperature (right panel) from 
a multi-incremental 4D-Var experiment with five outer loops (in this experiment the outer loop 
resolution is TCo399, approx. 30 km, and the inner loop resolutions are 
TL95/TL159/TL255/TL255/TL255, approx. 210, 125, 80 km; more details in Table 1). The magnitude 
of the analysis increments is seen to gradually decrease for successive outer loop iterations, more rapidly 
in the stratosphere for vorticity. After five outer loop iterations, the magnitude of the analysis increments 
appears to asymptote to a relatively small value for temperature throughout the atmospheric column 
(∆𝑇𝑇𝑎𝑎 ≈ 0.05𝐾𝐾), and for vorticity in the stratosphere and mesosphere (∆𝑣𝑣𝑣𝑣𝑎𝑎 ≈ 10−7𝑠𝑠−1  for model levels 
greater than 70). On the other hand, incremental 4D-Var does not seem to have fully converged for 
vorticity in the troposphere. This is confirmed by the longitudinal averages of the analysis increments 
produced by the first and the last outer loop for temperature, vorticity and humidity, which are shown 
in Fig. 7.  It is apparent how the last outer loop iteration still manages to produce non-negligible 
increments for the tropospheric wind and humidity fields (middle and bottom rows in Fig. 7), as a result 
of the increased presence of nonlinear observations and the increased nonlinearity of the relevant 
meteorology (e.g., organised convection and baroclinic instability). This suggests that increasing the 
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number of outer loops from the current operational value of three up to at least five can lead to a better 
use of available observations and, ultimately, more accurate analyses and forecasts. An interesting side 
aspect of this investigation has been to highlight the relative large analysis increments produced by 4D-
Var in the mesosphere (i.e., above model level 20 in the plots). This is due to a combination of relatively 
inaccurate model dynamics due to sponge layer effects and the scarcity of observational constraints in 
this part of the atmosphere (the highest peaking channels from current microwave sounders are only 
marginally sensitive to this upper atmospheric layer). 

 

Figure 6: Vertical profiles of the globally averaged standard deviation of the analysis increments 
produced by successive outer loop iterations for vorticity (left panel) and temperature (right panel). 
Values have been averaged over a one-month period. The assimilation experiment has been run with an 
outer loop resolution corresponding to a cubic octahedral reduced Gaussian grid with spectral 
truncation 399 (TCo399, approx. 30 km grid spacing); and inner loop resolutions corresponding to 
linear reduced resolution Gaussian grids at spectral truncations TL95/159/255/255/255, corresponding 
to approx. 210/120/80 km grid spacing. 

 

 

Experiment Resolution of 
Outer Loop 

Number of Outer 
Loops 

Resolution of Minimizations 

Reference TCo399 3 TL95/TL159/TL255 
1 Outer Loop 
Experiment 

TCo399 1 TL255 

4 Outer Loop 
Experiment 

TCo399 4 TL95/TL159/TL255/TL255 

5 Outer Loop 
Experiment 

TCo399 5 TL95/TL159/TL255/TL255/TL255 

Table 1. Resolution and number of outer loop iterations for the sensitivity experiments discussed in Sec. 
5. TCo399 means IFS model integrations with spectral triangular truncation 399 and a cubic octahedral 
reduced Gaussian grid. TLXXX mean IFS model integrations carried out at spectral triangular 
truncation XXX on a linear reduced Gaussian grid. All minimizations are performed using the full 
physics tangent linear and adjoint models. 
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Figure 7. Vertical profiles of the longitudinally averaged standard deviation of the analysis increments 
produced at the end of the first outer loop minimisation (left column) and the fifth outer loop 
minimisation (right column) for temperature (first row), vorticity (second row) and humidity (third row). 
Details of the assimilation experiments as described in text. 

4.3 A test case 

An informative example of the effectiveness of incremental 4D-Var in dealing with nonlinear error 
evolution in active weather systems is described in the following test case of organised convection in 
the southern United States. These high-impact weather phenomena are particularly interesting from a 
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data assimilation perspective because: 1) they have been shown to be potential precursors of significant 
forecast “busts” in downstream regions, Europe in particular (Rodwell et al., 2013); and 2) they occur 
in probably the most densely observed region of the world, thus allowing a more in-depth look into the 
ability of the assimilation system to make effective use of the observations. 

In the case described here, large scale organised convection with the satellite signature of a mesoscale 
convective complex (Fig. 8, left panel), was forming in the southern US coastal plains in the local 
evening hours of 2017-05-03, continuing for most of the night. The synoptic situation, as depicted by 
the ECMWF operational analysis (Fig. 8, right panel) is characteristic of this type of events (Maddox, 
1980): A strong warm, moist southerly flow from the Gulf of Mexico is taking place in the lower 
troposphere, in the region ahead of an upper level trough. The combination of strong warm and moist 
air advection in the lower levels with vorticity advection aloft leads to a situation conducive to intense 
organised convection in a region along the Texas-Louisiana cost, starting at around 13UTC on the 3 
May 2017 and lasting until approx. 6UTC of the 4 May 2017. Forecasting the intensity and location of 
convection is notoriously difficult and the ECMWF analysis increments (Fig. 9) show that the 
operational 4D-Var makes significant changes to the first guess fields throughout the atmospheric 
column. In particular, the analysis appears to adjust the strength of the convective system through a 
significant cooling at the top of the troposphere and associated enhancement of the divergent wind field 
(Figure 9, left panel). In the boundary layer (Figure 9, right panel), the analysis increments show more 
spatial variability, but the main signal of localised warming and convergence of the wind field in the 
direction of movement of the convective system are apparent.  

 

Figure 8. Left panel: Infrared image of the continental US from the GOES-13 geostationary satellite, 
valid on 2017-05-03 17.45 UTC (credits: National Centers for Environmental Information, NOAA). 
Right panel: ECMWF operational analysis of geopotential at 200 hPa (continuous isolines), 
temperature at 200 hPa (dashed isolines) and equivalent potential temperature at 850 hPa (shaded, 
units Kelvin), valid on 2017-05-03 18 UTC. 

The magnitude of the analysis increments in the case studied here (up to ~8 K for temperature, ~30 m/s 
for wind) is more than an order of magnitude larger than their average standard deviations: thus, 
significant nonlinear effects are expected in the assimilation update. This is confirmed in Figure 10 
where we show the standard deviation of the first guess and analysis departures from wind observations 
in the 100-400 hPa layer for the first guess and the one, three, five outer loop analyses over the 9 to 21 
UTC assimilation window of 2017-05-03 (All experiments are performed at the operational TCo1279 
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resolution, approx. 9 km grid spacing, using IFS cycle 43R3). It is visually apparent that the analysed 
trajectories are better able to fit the observations with increasing number of outer loops: the area-
averaged standard deviation of the innovations decreases from 2.301 m/s in the first guess trajectory to 
2.117 m/s, 1.705 m/s and 1.622 m/s in the one, three and five outer loop analysis trajectories 
respectively. No further improvements were seen with further increases in the outer loop count, which 
points to residual model deficiencies, either in terms of spatial resolution and/or model errors; or missing 
representativeness errors in the specified observation errors. We note that the wind observations whose 
departures are shown in the plots in Fig. 10 come from the US radiosonde network and from aircraft 
observations, which implies that linear observation operators are used. Thus, the nonlinear effects seen 
in the plots arise exclusively from nonlinearities in the evolution of model perturbations in the 
assimilation window. 

 

Figure 9 Left panel: ECMWF operational analysis of geopotential at 200 hPa (continuous isolines), 
temperature analysis increments at 150 hPa (colour shaded, units Kelvin) and wind vector analysis 
increments at 150 hPa (arrows, units m/s), valid on 2017-05-03 12 UTC. Right panel: as left, all 
quantities at 850 hPa. 
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Figure 10. Standard deviation of wind vector observation minus model departures over the 09 to 21 
UTC assimilation window of 2017-5-03 in the 100-400 hPa layer for a pre-operational version of the 
IFS 43R3 cycle: first guess departures (top left panel); a one outer loop analysis departures (top right 
panel); a three outer loop analysis departures (bottom left plot); a five outer loop analysis departures 
(bottom right panel). 

 

5 Results from cycling data assimilation experiments 
The diagnostics presented in section 4 showed that increasing the number of outer loop iterations in the 
ECMWF 4D-Var helps to reduce the magnitude of nonlinearities in the analysis and suggests that it can 
lead to a better use of available observations, in particular those that are nonlinearly related to the model 
state. The next step is then to verify that these findings are confirmed in a cycled data assimilation 
environment as close as it is computationally affordable to the operational ECMWF assimilation system. 
To this end a series of data assimilation experiments has been run with a recent ECMWF IFS cycle 
(cycle 43R3, operational from July 2017), in which only the horizontal spatial resolution has been 
changed for both outer loops and inner loop minimizations. The operational 4D-Var runs three outer 
loops at TCo 1279 resolution (approx. 9 km) and performs three inner loop minimizations at 
TL255/TL319/TL399 resolution (approx. 80/60/50 km). In the experiments described here the outer 
loop resolution has been reduced to TCo399 (approx. 30 km) and the inner loop resolutions vary from 
TL95 to TL159 to TL255 (approx. 210, 125, 80 km; more details in Table 1). The number of outer loop 
updates varies from one to five. In the following, we present results for the one, three, four and five 
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outer loop experiments. In these experiments, the full observational dataset used in operations at 
ECMWF has been assimilated. The number of inner loop iterations in the minimisations is not 
prescribed, because minimisations stop when a convergence criterion based on the information content 
of the minimisation is reached (Fisher, 2003). Convergence is usually reached in approx. 30 iterations, 
and this number has been found not to be sensitive to resolution and number of outer loop re-
linearizations. A hard stopping criterion of 50 iterations is also present, but in all the experiments 
reported here it was never reached. An additional point to note is that all the experiments have at least 
one minimization performed at the highest resolution (i.e., TL255). Thus, differences in analysis and 
forecast performance cannot be attributed to either insufficient resolution in the minimization or 
incomplete convergence.  

5.1 Analysis skill – full observing system 

A standard way to evaluate the skill of the analyses produced by a cycling data assimilation system is 
to look at the statistics of observation minus analysis (o-a) departures and observation minus first guess 
departures (o-b). In the ECMWF 4D-Var the o-a departures are computed from a full model integration 
started from the analysed model state at the beginning of the 12 hour assimilation window. Thus, they 
give an indication of how closely a nonlinear forecast started from the initial analysis is able to fit 
observations throughout the assimilation window. The o-b departures are computed from a short-range 
forecast started from a 4D-Var analysis valid three hours before the start of the new assimilation 
window. Thus, the new observations are confronted with a nonlinear forecast in the 3 to 15 hour range. 
The o-b fit gives an indication of how much of the observation information from the previous 
assimilation window is retained in the short-range forecast used for cycling the analysis. 

A representative sample of o-a and o-b departures is shown in Figure 11. In these plots, the observation 
departures for a standard three outer loops 4D-Var assimilation cycle are used as a baseline against 
which the departures for one, four and five outer loop experiments are compared. The first thing to note 
is the significant degradation in both o-a and o-b statistics of the one-outer loop experiment. This 
degradation is visible for all observation types (not shown) and indicates that a linear analysis update is 
inadequate in the context of a 12-hour assimilation window. The other significant result is that increasing 
the number of outer loops to four, and to a smaller extent five, can bring additional benefits in the 
tropospheric analysis, in particular for observations sensitive to humidity and clouds and for wind 
observations (not shown). This confirms the diagnostics of Figs. 6 and 7, i.e. that the wind and humidity 
analysis increments in the troposphere are still relatively large in the fourth and fifth outer loop updates, 
indicating that the minimization has not fully converged. 

The only degradation in o-a and o-b statistics for the four and five outer loop experiments is visible in 
the stratospheric-peaking channels of the microwave (Fig 11, bottom right, channels 10 to 14) and 
infrared hyperspectral instruments (not shown). This is particularly visible in the five outer loop 
experiment, where o-a statistics are clearly degraded for channels 10 to 14 (approx. peaking from 50 to 
2 hPa) while the degradation in the fit to the short range forecast (o-b) is only marginal. This result can 
be partially explained by the diagnostic shown in Fig. 1, where it was shown that the magnitude of 
nonlinear effects in the ECMWF analysis system is relatively small in the stratosphere. Thus, the 
incremental minimisation can be expected to converge more rapidly in the stratosphere and additional 
outer loops beyond the standard three cannot be expected to significantly improve o-a and o-b fits. On 
the other hand, the reason why these fits are actually degraded is the subject of current investigations. 
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Preliminary results indicate that the main cause of this behaviour can be traced to the different timesteps 
used in the inner and outer loops.  This difference in timesteps leads to different speed of propagation 
of gravity waves in the stratosphere, which then leads to oscillating behaviour in the minimization. This 
is ongoing work and we defer a more complete treatment of this interesting effect to a future publication. 

   

Figure 11. Normalised standard deviations of analysis (o-a) and first guess (o-b) departures for 
radiosonde temperature observations (top left); radiosonde humidity observations (top right); the 
microwave imager AMSR-2 (bottom left); the combined observations from the AMSU-A microwave 
sounder instrument on board the AQUA, METOP-A/B, NOAA-15/18/19 satellites (bottom right). The 
100% baseline refers to the three outer loop experiment, the black/red/green lines to the one/four/five 
outer loop experiments respectively. Values smaller/larger than 100 indicated tighter/looser fit of the 
analysis/first guess to the observations relative to the three outer loop baseline experiment. Values are 
averaged over the 2016-12-20 to 2017-02-28 period. Error bars represent 95% confidence levels.   

5.2 Forecast skill – full observing system 

The forecast skill scores show a high level of consistency with the analysis skill diagnostics. In Figure 
12 we present a selection of tropospheric forecast skill scores relevant for evaluating standard synoptic 
performance (500 hPa geopotential RMS forecast error, top row), the water cycle (Total Column Water 
Vapour RMS error, second row) and the wind field (200 and 850 hPa wind vector RMS errors, third and 
bottom row). All the diagnostics confirm the significant degradation in performance for the one outer 
loop experiment and the small but statistically significant improvement of the four and five outer loop 
experiments with respect to the baseline three outer loop experiment. In the stratosphere (not shown) 
forecast skill scores again show degraded performance for the one outer loop experiment, while results 
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are mostly neutral or slightly positive for the four and five outer loop experiments. One notable 
exception is the tropical stratospheric layer from 5 to 1 hPa where the five outer loop experiment show 
a statistically significant degradation, again confirming the analysis skill diagnostic results. 

 

Figure 12. Normalised root mean square forecast errors for geopotential at 500 hPa (top row); Total 
Column Water Vapour (second row); Wind Vector at 200 hPa (third row); Wind Vector at 850 hPa 
(bottom row). The black/red/green lines refer to the one/four/five outer loop experiments, respectively. 
Errors are normalised with respect to the three outer loop experiments and are computed using the 
operational ECMWF analysis as verification. Error bars represent 95% confidence levels. 

5.3 Analysis and Forecast skill - linear observation operators 

In Sect. 2 of this paper we have shown how nonlinear effects in 4D-Var arise from two different sources: 
nonlinearities in the model evolution during the assimilation window and nonlinearities in the 
observation operators. It is difficult to cleanly disentangle the two effects, as they are linked inside the 
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generalised observation operator G and its linearizations. We have however tried to evaluate the impact 
of the model nonlinearities in isolation by running a set of multi-outer loop assimilation experiments 
where we have retained a subset of observations that are linearly related to the control variables 
(Conventional in-situ observations, Atmospheric Motion Vectors, GPS Radio Occultation bending 
angles, microwave temperature sounders). A sample of results from this set of experiments is presented 
in Figure 13, which shows the same set of forecast skill scores shown in Fig. 12 for the experiments 
with the full observing system. It can be seen that the impact of going from one to three outer loops is 
still very significant. However, the impact of going from three to four outer loops appear to be smaller 
than in the experiments with the full observing system, and this effect is visible in other forecast skill 
measures as well (not shown). This suggests that in the current ECMWF 4D-Var it is the presence of 
nonlinear observations (in particular the all-sky radiances sensitive to cloud and precipitation) that is 
responsible for the additional benefit of running more than the current three outer loops. 

 

Figure 13. Normalised root mean square forecast errors for geopotential at 500 hPa (top row); Total 
Column Water Vapour (second row); Wind Vector at 200 hPa (third row); Wind Vector at 850 hPa 
(bottom row) for the assimilation experiments using the linear observations subset. The black/red lines 
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refer to the one/four outer loop experiments, respectively. Errors are normalised with respect to the 
three outer loop experiment and are computed using the operational ECMWF analysis as verification. 
Error bars represent 95% confidence levels. 
 

6 Discussion and conclusions  
In modern atmospheric data assimilation (and, arguably, in most of the other Earth system components 
as well) nonlinearities play an ever more important role. This is due to the ever-increasing resolution 
and complexity of the prognostic models, which exhibit instabilities at smaller scales and thus present 
faster nonlinear error growth during the assimilation window, and to the emergence of an array of 
observations that are nonlinearly related to the control vector variables used in the variational analyses. 
Both these trends are expected to continue in the near future, which makes the capacity of the 
assimilation algorithms to deal effectively with nonlinear effects an increasingly important benchmark.  

The ECMWF implementation of 4D-Var relies on a perturbative approach to nonlinearity. Incremental 
4D-Var is based on the concept of a purely linear analysis update iterated on ever more accurate first 
guess trajectories. Diagnostics in both observation space and model space support this interpretation and 
show that the capacity to run more than one outer loop is a significant driver of the overall ECMWF 
analysis and forecast skill. Results from long data assimilation cycling experiments show that running 
the current ECMWF 4D-Var with one outer loop only, which is equivalent to making a purely linear 
analysis update, would result in very significant deterioration in all analysis and forecast accuracy 
metrics. Conversely, adding one, or possibly two additional outer loops to the current operational set-
up of three outer loop updates, appear beneficial both in terms of analysis quality and in terms of general 
forecast skill. Results from limited additional experimentation (not shown) also indicate that more than 
five outer loops do not appear to bring further benefits, at least in the experimental configuration we 
have used. 

One interesting question is about the limits of applicability of the multi-incremental approach in the 
ECMWF data assimilation system. As noted in Sec. 5, while the tropospheric analyses and forecasts 
were consistently improved in the four and five outer loop assimilation experiments, signs of 
degradation started to appear in the analysis and first guess fit of some types of stratospheric peaking 
radiance observations. Interestingly, these degradations were not seen in the experiments using only 
observations which are linearly related to the state. This suggests that changes to the analysis introduced 
by the assimilation of nonlinear observations (mainly humidity and cloud and precipitation sensitive 
radiances) affect the stratospheric analysis either through the shape of the background error spatial 
correlations or by the generation of gravity wave structures in the initial conditions. Remarkably, the 
stratospheric degradation of the multi-outer loop experiments also disappeared in tests run with the full 
observing system with matching timesteps for the outer and inner loop integrations. This result gives 
further support to the hypothesis that the representation in the 4D-Var analysis of stratospheric gravity 
waves excited by the assimilation of all-sky observations could be one of the main drivers of these 
effects. These interactions are currently being investigated. 

Another obvious factor potentially limiting the applicability of the incremental algorithm is the range of 
validity of the tangent linear (TL) hypothesis (Sect. 2). As reported in Bonavita et al. 2017b, problems 
in 4D-Var convergence connected with the TL hypothesis usually arise in situations where the first guess 
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departures are at least one order of magnitude larger than the assumed observation errors. In most cases, 
use of more realistic values of the observation errors, which better take into account the representativity 
and observation operator components, are sufficient to regularise the minimization. 

While the advantages of being able to run an increased number of outer loop linearizations are clear, the 
question remains on how to fit them inside the typically tight operational schedules of operational 
weather centres. Taking the ECMWF data assimilation system as an example, the three outer loops 4D-
Var analysis has about 45 minutes to complete. Given the sequential nature of the 4D-Var minimization, 
each additional outer loop would increase this time by approx. 15 minutes. This implies that, in the 
current set-up, the observation cut-off time would have to be pushed back by a similar time interval, 
quickly negating any advantage that the increased number of outer loops might bring. One possible way 
to overcome this problem would be to allow late arriving observations to enter the assimilation at 
successive outer loop updates. This would effectively push the observation cut-off time forward to the 
beginning of the last minimization, thus allowing to start the 4D-Var analysis earlier and consequently 
accommodate additional outer loop updates. This assimilation framework, which we call “continuous 
DA”, is currently being tested at ECMWF and results will be documented in a forthcoming paper. Note 
that in the continuous DA the problem being solved is conceptually different from that of incremental 
4D-Var. In incremental 4D-Var we solve a nonlinear problem through repeated linearizations. In the 
continuous DA we solve a sequence of slightly different nonlinear minimisation problems, taking 
advantage of increasingly accurate first guess trajectories. 

Another possible approach to increase the number of outer loops within the operational time constraints 
is to adopt an “overlapping” assimilation window framework, for example along the lines discussed in 
Bonavita et al, 2017a. In this configuration, observations that have been assimilated in both successive 
overlapping windows will have effectively be seen by twice the number of guess trajectories as in a 
standard non-overlapping configuration. This idea, similar to the quasi-static variational DA approach 
of Pires et al, 1996 and Jarvinen et al, 1996, is also being actively investigated.  
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