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Outline 

• Motivation: Emerging constraints for ensemble-based assimilation and forecasts of Weather & Climate 

with increasing complexity

• An intermediate goal: globally uniform weather & climate modelling at 1 km horizontal resolution

• ESCAPE(-2) stands for

– Pioneering approaches for refactoring society critical legacy codes

– Energy-efficient accelerator use in global weather & climate prediction

– Co-development of novel mathematical algorithms & hardware adaptation

– Defining and encapsulating the fundamental algorithmic building blocks ("Weather and Climate Dwarfs") 

– Reviewing the need for precision

– Pioneering algorithm development with hardware adaptation using DSL toolchains

– A HPCW benchmark and cross-disciplinary Verification, Validation, and Uncertainty Quantification (VVUQ)

– Application resilience
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ECMWF’s progress in degrees of freedom 

(levels x grid columns x  prognostic variables)

(Schulthess et al, 2018)

Gap of sustained 

and peak performance

Steepness of gradient 

from 10km to 1km
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Hurricane IRMA 18km vs 5km ensemble

5

ECMWF Strategy 2025

a 5km ensemble …

S. Lang & L. Magnusson 



Ocean – Land – Atmosphere – Sea ice
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17%

25%

31%

14%

11%

GP_DYNAMICS SI_SOLVER SP_TRANSFORMS PHYSICS+RAD WAVEMODEL OCEANMODEL

coupled TCo1279 L137 (~9km operational) run

Where do we spent the time ?
Where do we spend the time ? Cycle 45r1

Single electrical group:

~52 minutes wallclock time

(single electrical group==384 nodes)

1408 MPI tasks x 18 threads

290 FC/day
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(hpc-

escape.eu)

Weather & Climate Dwarfs

Extract model dwarfs…

… explore 

alternative numerical 

algorithms …

… hardware 

adaptation …

… reassemble 

model and 

benchmark



Atlas: a library for NWP and climate modelling
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Deconinck et al. 2017

https://github.com/ecmwf



Domain-specific language toolchain

Advection (MPDATA)

Complementary skills of CLAW, GridTools (MeteoSwiss) and Atlas (ECMWF) 
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Weather & Climate Dwarfs

Comparison of software optimized for GPU 
and Xeon processors

Poulsen & Berg (2017)



23%

13%

4%5%

55%

spectral transform

IFS 9km (ECMWF) ALARO-EPS 2.5km (RMI)

36
%

18
% 9%

37
%

COSMO-EULAG 2.2km (PSNC)

19
%

26
%

55
%

GCR solver

Relevance of our 
dwarfs

% of the forecast runtime
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Advection
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Christian Kuehnlein

Alternative dynamical core choices 

on the same grid with the same physics!

Finite volume

Spectral transform

Another alternative: higher-order finite-difference 

development by M. Glinton & P. Bénard



Bespoke Krylov solvers
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Parallel restriction, prolongation and Atlas mesh generation

interpolation
restriction

Coarse meshCoarse mesh Fine mesh

Distributed & Atlas 
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dgemm FLT

Number of floating point operations for direct or inverse spectral 

transforms of a single field, scaled by N2log3N
(Wedi et al, 2013)

Fast Legendre Transform

Reduces number of 

floating point operations
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Alan Gray, Peter Messmer, NVIDIA

Schematic description of the spectral transform method 
in the ECMWF IFS model

Increases number of 
floating point operations
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Will Deep Learning influence algorithmic choices for weather & climate ?

https://news.developer.nvidia.com/nvswitch-leveraging-nvlink-to-maximum-effect/See talk by A. Gray
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Analysing performance with roofline plots

GPU speed-up

Advection

Spectral transforms
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Optalysys: optical processor
for spectral transform (biFFT and spherical 

harmonics) at speed of light ?
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Benefit of accelerators – theoretical model
number of devices (acc.+CPU) at MétéoFrance

Assumes:
sequential execution
perfect scalability

Philippe Marginaud, 
Andreas Mueller



Spectral transform
optimisation by Atos/Bull

transposition in
Fourier transform:
2-3x speedup

measurements for
the plot: SKX,
similar results on
Cray at ECMWF

Erwan Raffin



Optimisations in IFS on CPUs
postprocessing of spectral data at 9km 

resolution

2.3x  
2.9x  
3.0x  
3.1x  

0 0.8 1.6 2.4 3.2 4

global

Europe

UK

Hungary

speedup

speedup compared to current operational transform used for postprocessing

Single CPU

Andreas Mueller
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IFS 1km: strong scaling on PizDaint

25

Goal ~1 year / Day

Many thanks to 

Thomas Schulthess & 

Maria Grazia Giuffreda !

Result of algorithmic 

changes and single precision



16%

45%

34%

GP_DYNAMICS SI_SOLVER SP_TRANSFORMS PHYSICS+RAD

Example: TCo7999 L62 (~1.25km)

Where do we spent the time ?
The cost profile of a 1.25km IFS atmosphere simulation on Piz Daint (CPU only)

4880 MPI tasks x 12 threads

69 FC/day ~ 0.19 SYPD

single precision / FLT

75% comms; 

25% compute

~85.21 MWh / SY

Based on the Piz Daint, Swiss 

Cray XC50 Haswell, Aries 

interconnect, ~5000 nodes 

total
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Simulating performance and scalability of 
MPI communications

27

Zheng and Marginaud (GMD, 2018)

Communication time as a function 
of halo size, topology & routing algorithm, 
compared to spectral transpositions 

MPI collectives at least across a subset
of nodes are required in NWP & climate!
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Communication is bad – small time steps are worse 

Same time to solution!
Energy efficiency?

Spectral element model
Time step = 4s

Spectral transform model
Time step = 240s

Spectral element model
Time step = 4s

Data movement x100 (x1000) 
more expensive than 

computations in time (energy)!

[Shalf et al. 2011] 







starting October 2018
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Summary 
• Numerical weather prediction & climate needs sustained efforts to evolve together with emerging computing 
opportunities

• ESCAPE and ESCAPE-2 will deliver

• Pioneering approaches for refactoring society critical legacy codes

• Weather & climate dwarfs

• Energy-efficient accelerator use in global weather & climate prediction

• Scrutiny of the need for precision

• Co-development of novel mathematical algorithms & hardware adaptation

• Pioneering mathematical algorithm development with hardware adaptation using DSL toolchains

• A HPCW benchmark and cross-disciplinary Verification, Validation, and Uncertainty Quantification (VVUQ)

• Application resilience

32
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48h forecast ~9km

48h forecast ~1km

http://gigapan.com/gigapans/206287

Take the “Turing test” of climate & weather modelling (T. Palmer)



Additional slides



18%

60%

17%

GP_DYNAMICS SI_SOLVER SP_TRANSFORMS PHYSICS+RAD

Example: TCo7999 L62 (~1.25km)

Where do we spent the time ?
The cost profile of a 1.25km (non-hydrostatic) IFS atmosphere simulation Piz Daint

4880 MPI tasks x 12 threads

32 FC/day ~ 0.088 SYPD

single precision / FLT

63% comms; 

37% compute

Based on the Piz Daint, Swiss 

Cray XC50 Haswell, Aries 

interconnect, ~5000 nodes 

total

~191.74 MWh / SY
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Global KE - Spectra ~500hPa

~9km ~2.5km ~1.25km

Resolve rather than parametrize much of the
crucial vertical transport of momentum and heat
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Singe vs double precision

10 days in 1 hour
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(Vana, Dueben et al 2017)
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Sustained HPC performance

38
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Ensemble of assimilations and forecasts

39
(Bauer et al, 2015)


