
October 29, 2014 PETER BAUER 2018

Progress report on ECMWF’s Scalability Programme
Peter Bauer and the Scalability Team (RDxFDxCD, ECMWF)

In the shorter term, implement low-hanging-fruit efficiency gains in present system to:
• Counterbalance cost of imminent science upgrades
• Trial portability/efficiency of present methodologies to existing hardware options
• Support planning (procurements w/ realistic budget requests, benchmarks, etc.)

In the longer term, test prepare and assess not-so-low-hanging fruit-efficiency gains in future system to:
• Counterbalance cost of more forward-looking science upgrade options
• Trial portability/efficiency of future methodologies to future hardware options
• Support planning (procurements w/ realistic budget requests, benchmarks, etc.)

The implications of fulfilling short-term and long-term needs are entirely different!

ECMWF Scalability
Programme 1.0

October 29, 2014 PETER BAUER 2018

| 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |

EuroHPC-1&2 pre-exascale

EuroHPC-3&4 exascale

FETHPC/ICT:

EINFRA/
INFRAEDI:

FETFLAG:

EuroHPC JU:

1. Weather and climate benchmarks, and IO (HPCW)
2. Demonstration of novel programming models (DSL)
3. Data aware numerical methods

1. Full-sized weather and climate models for EuroHPC
2. Community testing of novel programming models (DSL)
3. Data handling workflows, data analytics research

1. Full-sized applications with required speed/volume and power footprint
2. Ingestion of downstream applications, all ensembles
3. Domain-specific, distributed computing capability, interactive workflows

 Feasibility of new concepts, computability

 Adaptation of leading models to (pre-)exascale; strategy for achieving full-sized requirements

 Redesign entire prediction philosophy

Weather & climate computing and data roadmap in H2020

 New centralized European infrastructure

October 29, 2014 PETER BAUER 2018

Low(ish)-hanging fruit: Computing

Precision:
• running IFS with single precision arithmetics can save 40% of runtime,

IFS-ST offers options like precision by wavenumber, only for LT, in semi-
implicit solver;

• storing ensemble model output at reduced precision can save 67% of
data volume;

Day-10 forecast difference Day-10 ensemble spread
SP vs DP (T in K at 850 hPa) all DP (T in K at 850 hPa)

Concurrency:
• allocating threads/task (/across tasks) to model

components like radiation or waves can save 20%
(gain increases with resolution);

• implementation is cumbersome;

Overlapping communication & computing:
• through programming models (Fortran co-array vs GPI2

vs MPI), gave substantial gains on Titan w/Gemini,
• on XC-30/40 w/ Aries there is no overall performance

benefit over default MPI implementation;

[Düben et al., Vana et al., Mozdzynski et al.]

October 29, 2014 PETER BAUER 2018

Low(ish)-hanging fruit: Diagnostics & Architectures

Performance tools:
• Integrate easy-to-use performance tools with IFS,

available to all
• ARM Forge MAP, BSC Extrae & Paraver (see POP CoE)

[From Patrick Gillies – check also Mario Acosta’s talk on Wednesday!]

Porting code to other processor types:
• OpenIFS and ESCAPE dwarfs ported to early access nodes -

collboration with U Bristol using Isambard Cray platform with
Cavium ThunderX2 CPUs

• Long and short-wave MCICA solvers ported to GPU V100 with
OpenACC (achieves 85% of peak memory bandwidth on V100)
– collaboration with NVIDIA by hackathon for ECMWF staff

Cloudsc on Broadwell and ThunderX2

October 29, 2014 PETER BAUER 2018

COPE: Observations pre-screened in small batches as they arrive.
Decoupled system is more robust to failures.

Forecast

pre-screening b2o

Obs
Store

4D-Var
Min

traj

4D-Var
Min

traj

4D-Var
Min

traj

Current processing chain is sequential; a failure at any point leads to delay in forecast production

pre-
screen

b2o

traj
4D-Var

Min

4D-Var
Min

4D-Var
Min

traj traj Forecast

Continuous Observation Processing Continuous DA

Not-so-low-hanging fruit: Pre-processing

Gains:
• resilience
• 15% cost in critical path

[From Peter Lean – check his talk
on Friday!]

October 29, 2014 PETER BAUER 2018

HPC Workload profiles

• Kronos tests HPC systems by deploying realistic workloads:

1. a workload model is generated from HPC workload profiling data

2. the workload model is then translated (and scaled) into a schedule of
representative and easily-portable applications

3. Kronos models and tests Compute, Interconnect, I/O subsystems

Workload
Model

Synthetic
Applications

Kronos

HPC prototype

to be tested

E.g. Workload execution profiles

E.g. I/O time-profiles

Post-processing

Not-so-low-hanging fruit: Benchmarking

[Antonino Bonanni, Tiago Quintino]

October 29, 2014 PETER BAUER 2018
[Düben and Bauer 2018]

1. Take ERA-5 z500/6o LAT/LON reanalyses/forecasts forecasts = operational forecasts, T21 forecasts, persistence
2. Train NN with truth
3. Run NN forecasts for z500 with all 9x9 grid points predicting tendency = local NN
4. Run NN forecasts for z500 with all grid points predicting tendency = global NN

Not-so-low-hanging fruit: AI methods for forecasting

October 29, 2014 PETER BAUER 2018

Data Set: 150,000 profiles total (25,000 locations with
different solar zenith angles), divided into
training=126,000, validation=24,000

Input to the network: 128 x 137 x 19 (128 batch size, 137
full levels, 19 variables SW clear sky)

Output of the network: 128 x 138 x 2 (up and down flux
on each half level)

Network: four 1D convolutional layers followed by two
fully connected layers; 194k trainable parameters

[Christoph Angerer & Jakob Progsch, NVIDIA;
Peter Düben, Robin Hogan, Peter Bauer]

Not-so-low-hanging fruit: AI methods for parameterizations

Shortwave and longwave flux profiles
(reference, NN, shading = natural variability)

October 29, 2014 PETER BAUER 2018

Far-hanging fruits: Algorithms – programming - hardware

GridTools

Atlas

Processors

Neural networks Mathematics&algorithms

October 29, 2014 PETER BAUER 2018

Far-hanging fruits: Algorithms – programming - hardware
Algorithmic flexibility equally applicable to:

Data Assimilation Forecasting

[Christoph Kühnlein,
Piotr Smolarkiewicz[Too many to single out a few]

w/o OOPS
w OOPS

perfect

October 29, 2014 PETER BAUER 2018

Far-hanging fruits: Algorithms – programming - hardware

The DSL tool-chain …

… supported by the toolchain:
1. Generate single-column abstraction code for physics dwarfs using Loki (=Python code transformation)
2. Generate GPU-code using CLAW
3. Generate prototype C-kernel for initial FPGA porting

[Michael Lange, Olivier Marsden]

October 29, 2014 PETER BAUER 2018

Examples of far-hanging fruit: Post-processing

[Tiago Quintino, Simon Smart]

October 29, 2014 PETER BAUER 2018

Examples of far-hanging fruit: Post-processing

[Tiago Quintino, Simon Smart]

October 29, 2014 PETER BAUER 2018

ECMWF Scalability Programme 2.0

Scalability Programme 1.0 Co-development of algorithmic
options, programming and
hardware:

Co-development of flexible
workflows, object data stores
and hardware (cloud aware):

October 29, 2014 PETER BAUER 2018

Future and Emerging Technology Flagships are:
“… science- and technology-driven, large-scale, multidisciplinary research initiatives built around a visionary
unifying goal ... tackle grand science and technology challenges … strong and broad basis for future innovation and
economic exploitation … novel benefits for society of a potential high impact … long-term and sustained effort.”

There is an opportunity to take this to the extreme!

The ExtremeEarth proposal: www.extremeearth.eu

October 29, 2014 PETER BAUER 2018

Ultra high-resolution Earth-system
physics-impact modelling capability

Extreme-scale Earth-system
data management capability

Extreme-scale Earth-system
computing capability

Interactive Earth-system
information system capability

October 29, 2014 PETER BAUER 2018

Incremental:
do while (skill .ne. good_enough)

model%resolution = model%resolution / model%dresolution

model%complexity = model%complexity * model%dcomplexity

ensemble%size = ensemble%size * ensemble%dsize

downstream%application = downstream%application + 1

call performance (model, ensemble, downstream, speed)

call translate (model, ensemble, downstream, speed, software, hardware)

do while (speed .ne. fast_enough)

call add_funding (bucks, software, hardware)

call add_optimization (software, hardware, speed)

call add_processors (software, hardware, speed)

if (bucks .gt. budget) abort

end do

call science (model, ensemble, downstream, skill)

end do

Radical:
call extreme_earth

Future forecasting
Incremental:
do while (skill .ne. good_enough)

model%resolution = model%resolution / model%dresolution

model%complexity = model%complexity * model%dcomplexity

ensemble%size = ensemble%size * ensemble%dsize

downstream%application = downstream%application + 1

call performance (model, ensemble, downstream, speed)

call translate (model, ensemble, downstream, speed, software, hardware)

do while (speed .ne. fast_enough)

call add_funding (bucks, software, hardware)

call add_optimization (software, hardware, speed)

call add_processors (software, hardware, speed)

if (bucks .gt. budget) abort

end do

call science (model, ensemble, downstream, skill)

end do

