

Looking towards the future – NCAR's Computing and Storage

Anke Kamrath

Director, Computational and Information Systems Laboratory (CISL) National Center for Atmospheric Research (NCAR)

anke@ucar.edu

18th Workshop on HPC in Meteorology September 24, 2018

Thanks to Rich Loft, Irfan Elahi, Dave Hart, Rory Kelly of NCAR for their slide contributions

Overview

- Existing NCAR HPC Environment "Cheyenne"
- Procurement Schedule for "NWSC-3"
- Next gen of computing and storage
 - Key Considerations
 - What might it look like?
 - Application preparations
 - Benchmarking Approach
 - Technology Risk Mitigation
 - Procurement Strategy

NCAR

Looking Towards the Future ----Computing and Storage

air • planet • people

HPC Roadmap

- Late 2018 Mid-2019 Benchmark design
- Late 2018 Mid-2019 Technology Briefings and Architecture Co-Design
- Feb 2019 May 2019 Science Requirements Process
- Late 2019 RFP Release.
- Early to Mid-2020 Selection and Approval
- Mid-2020 Early 2021 Facility Prep, Vendor System Build and Prep
- Early 2021 July 2021 System Deployment, Install and Acceptance
- July 2021 Production start date, 6-month overlap with Cheyenne

Increasing Computing Complexity

Increasing Storage Complexity

Managing the many choices...

Compute Options

- CPUs: Intel XEON, IBM POWER9, ARM (Cavium ThunderX), AMD (Epyc)
- Coprocessors: GPUs, FPGAs, NEC Aurora
- Network: OPA V2 (Intel), Cray proprietary, Infiniband (HDR), Ethernet?
- Machine Learning: Intel Nervana, NVIDIA tensor cores, Google TPUs

Memory & Storage

- High-speed, stacked memory: HBM2 & MCDATA
- High IOPS Non-volatile Storage: (Optane (3D-xpoint), Flash-based SSDs)

Cloud Computing & Storage Considerations

- On-Premise Cloud (Containers)
- Commercial Cloud (Bursting)
- HPC in the Cloud (Hosting)

NCAR

NWSC-3 Attributes

(Focus on a design that enhances the end-to-end rate of science throughput)

- ✓ Heterogeneous hardware
- ✓ High IOPS Storage
- ✓ High Bandwidth Memory
- ✓ Application containers
- ✓ Cloud bursting capability

air • planet • people

✓ Storage tiers

Looking Towards the Future ----Computing and Storage

air • planet • people 8

NCAR

NWSC-3 Design Strawman

Looking Towards the Future ----Computing and Storage

NCAR

air • planet • people

Workflow Centric Architecture User defined job placement

Simulation Workload

FY2018 Cheyenne Usage by Science Area

-					
		Other 11%			
				Weather Prediction 10%	
	Mesoscale Meteorology 6%	Geospace 59		Ocean Sciences 5% Fluid Dynamics and	
Climate, Large-Scale Dynamics 48%	Atmospheric Chemistry 6%	Paleoclima 5%	ite	Turbulence 4% Regional Climate 2%	

- **Climate** (Climate + Paleoclimate + Regional Climate) = 55% (~CESM)
- Weather (Weather + Meso Meteo + Atmos Chem) = 22% (~WRF/MPAS)

air • planet • people 11

• **Geospace** = 5% (~MHD via MURAM)

NCAR

• Fluid Dynamics/Turbulence =5% (~LES)

Application Strategy

Performance

 Must be able to track rapidlychanging future architectures

Portability •

NCAR

 Need to maintain flexibility in the choice of hardware (validate codes with several compilers)

Power savings

– TCO matters. Power efficiency of HPC-scale systems is a significant operational cost (consider GPUs where possible)

Computing and Storage

LES

CESM Strategy

• CESM2 code frozen during CMIP6

- CESM2 –1.6M LOC, 10,570 Subroutines
- Compilers ARM HPCC, ARM AOCC, Gnu, Cray, PGI, XLF and Intel
 - Work with vendors to resolve port, validate, performance issues
 - Compiler flexibility = procurement flexibility

GPUs

NCAR

- Strategy Single Source Programming Model
 - CPU: OpenMP directives
 - GPU: OpenACC directives
- Integrating MPAS DyCore into CESM
- Considering port of MOM6 to GPUs
- Ultimately expect to run CESM in "hybrid" mode (part of code on traditional nodes and part on accelerators).

Looking Towards the Future ----Computing and Storage

air • planet • *people*

13

Growing GPU-enabled workload

• MPAS (MMM)

- Meteorological GCM
- Fortran + OpenACC multi-GPU code
- Showing 2:1 Xeon node to GPU device ratio

• MURaM (HAO)

- A MHD radiative solar physics model.
- C + OpenACC multi-GPU code.

Fast Eddy (RAL)

NCAR

- LES model for microscale meteorology.
- CUDA-based multi-GPU code + visualization

MURaM is used to study magneto-convection in sunspots. Courtesy Matthias Rempel, HAO

air • planet • *people*

Influence on procurement: A portion of NWSC-3's HPC compute will likely have GPU accelerators.

Looking Towards the Future ----Computing and Storage 14

Growing Machine Learning Portfolio (ML that impacts HPC... "Big ML")

Why machine-learned emulation? The *per-core performance* of conventional computer architectures has stagnated, and models are getting *increasingly complex*. Replacing human-crafted modeling workflow components with machine learning algorithms may simplify, accelerate and improve them.

- Interplanetary coronal mass ejection (CME) Drs. Gibson & Flyer
 - space weather prediction

NCAR

- Seasonal weather patterns Drs. Sobhani & DelVento
 - Seasonal prediction of dangerous hot weather in the Eastern U.S.
- Cloud microphysics Drs. Gettelman, Gagne & Sobhani
 - improved weather and climate modeling
- Sub-grid-scale turbulence -Drs. Kosovic, Haupt & Gagne
 - improved representation of the surface layer in meteorological models

Growing Portfolio of Small Jobs

- Pure "Capacity" Workload
- 10.8M jobs (93% of all jobs) run <30mins
 - but 7% of the core-hours
 - 3 projects responsible for 85% of these corehours
- 4% of jobs single node
- Small jobs are creating jitter and noise (system instability) for larger runs

air • planet • *people*

16

Growing and Emerging Cloud Workload

• Use Cases

- High Availability (Antarctic Forecast on Cloud when HPC down)
- Bursting to cloud for urgent runs (e.g., Hurricane forecasting) via scheduler
- General small job overflow for users willing to use more expensive allocation (e.g., WRF job swarms)
- Larger role in future? (CESM2 1^o running on AWS EC2 at 10 SYPD with I/O)
- Developing Sample Containers to go with our applications
 - On- or Off-Prem

NCAR

- Capturing complex environment needs
- Data Discovery, Curation, Analytics and Storage – more to come

air • planet • people 17

NWSC-3 Benchmarking Strategy

Reduce Barrier of Entry for Vendors

- Lighter weight and easier-to-use process
- Reduce number of full applications
- Move to I/O benchmarking and important models (CESM) to Acceptance phase

Increase Use of `mini-apps'

- Simplified benchmarks derived from important NCAR models
- Reduced time to build and run
- Representative of application performance characteristics

Benchmark Components

NCAR

- Kernels and Synthetic (hardware characteristics)
- Capability (limited number of "scalable science" apps)
- Capacity (throughput workload test)
- Multi-GPU benchmark (new!)
- Data Science and Deep Learning (new!)
- Collaborate on mini-apps and synthetics expect overlap with benchmarks at other centers (e.g., ECMWF)

air • planet • people 18

Technology Risk Mitigation for NWSC-3

Technology Partnerships:

- ARM Compiler, Chip and System (ARM HPC, Cavium, U. Bristol)
- Application optimization (e.g. with Intel and nVIDIA)
- Cloud-based access to benchmark systems (e.g. ReScale, AMD)

Recent Production Deployments

- SSD on Super
- Campaign Store
- CASPER (heterogeneous hardware, self integrated)

Systems Software

- SLURM deployment and testing new features
- On-prem Cloud (Cumulus) coming soon
- Containerization

NCAR

Looking Towards the Future ----Computing and Storage

air • planet • people 19

Summary *NWSC-3 Procurement Strategy*

Increase Vendor Pool

NCAR

- Keeping pricing honest in procurements through competition: lightweight benchmarks, portable codes
- Lower barrier of entry with easier-to-use benchmark suite.
- Best value procurement

Create Environment to consider many solutions

- Retire as much technical risk as possible (hardware and system software)
- Prepare Applications to handle wide-range of systems
- Single or multiple-vendor options in RFP

• Keep an eye on TCO (Total Cost of Ownership)

Energy costs could be a deciding factor (consider GPUs where possible)

air • planet • people 20

Thank you

Questions?

Procurement and Technology POC – Irfan Elahi (Irfan@ucar.edu)

NCAR

air • planet • people