
Comparison of data assimilation coupling 
strategies for Earth system models

Prepared: Sergey Frolov (NRL), with contributions from:

NRL: B. Ruston, W. Campbell, J. McLay, M. Flatau, D. Kuhl, N. Barton, OM. Smedstad, C. Rowley, C. Barron, P. Hogan, and T. Townsend

U Melbourne: C. Bishop

ECMWF: P. Laloyaux, M. Bonavita, J. Bidlot

ECMWF annual seminar, Reading, UK, September 2018



The coupled DA opportunity: 
effective use of observations
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Cross-fluid correlations 
that may benefit DA

Highly valuable satellite 
observations that are 

sensitive to both fluids

Well-established 
DA system for each 

fluid

How do we exploit these opportunities? 
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• The coupled DA opportunity and challenge

• Part 1: Algorithmic consideration for coupled DA

• Challenge 1: Approximations to the strongly coupled data assimilation 

• Challenge 2: Mitigating for differences in space and time scales between Earth system 
components 

• Part 2: Recent insights in to the coupling of atmospheric and oceanic temperatures

• Part 3: Low hanging fruit for coupled DA

Outline
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The coupled DA challenge 1: 
Synchronization of the forecast
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Forecast lead time

Forecast lead time

Forecast from “True” IC
Forecast from uncoupled DA

Atm. temp. analysis is away from truth 
because few direct observation of low-
level atmospheric temperature are 
available over the ocean 

Ocean temp. analysis is closer to truth 
because plentiful SST observations are 
available over the ocean 

How long does it take for the ocean and atmospheric 
models to synchronize (balance) and converge on “truth” 

Key questions addressed by methods 
development: 
• How long does it take to 

synchronize?
• Can the synchronization time be 

moved within the data assimilation 
window?

• Is it sufficient to rely on the forecast 
model for synchronization or do we 
need coupled DA? 
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Forecast from “True” IC
Forecast from uncoupled DA



Coupled DA: a couple of definitions

For didactic purposes, lets start with something simple:
• Observational space estimator with one outerloop 

Kalman gain: maps observation misfits to model space
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Definitions: strongly coupled DA
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• None so far in the models of operational complexity

• Early indications of promise in simplified models
• Lu et al. (2015), Sluka (2016), Smith et al. (2015, 2017)

• Early indications of caution against strong coupling
• Lu et al. (2015), Frolov et.al. (2016)

Examples of strongly coupled DA
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Frolov et al. (2016) MWR

Strongly coupled is better

Intermediate coupling
is better



Definitions: weakly coupled DA

Weakly coupled data assimilation
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An example of a weakly coupled DA

• Impact of coupled forecast models have been widely documented: 
• TC strength (ECMWF above)
• Tropical wind-SST coupling
• Ice extent prediction 9



Definitions: coupling through an outerloop

Data assimilation coupled through 4DVAR outerloop
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An example of DA coupled through an outerloop

• Laloyaux et al. (2016) showed that outerloop coupling is effective at propagating information between 
assimilated fluids: E.g.
• (left) Impact of wind observation on the mixed layer depth 
• (right) Impact of SST assimilation on the boundary layer depth 
• (Later in this talk) is outerloop enough? 

Atmosphere wind

Ocean temp. 

Atmosphere temp.

Ocean temp. 
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Definitions: coupling through observation 
operator

Data assimilation coupled through observation operator
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Example of coupling through observation 
operator 

Average increment (July-August 2016)

Atmosphere-only DA 
Coupling through 

observation operator 

Coupling through 
observation operator and P0

• Preliminary results suggests 
that coupling through 
observation operator alone 
might further alias 
atmospheric signal into the 
ocean. 
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Definitions: coupling through initial time error 
covariance 

Data assimilation coupled through initial time covariance 

TLM/ADJ of the forecast model:
AA 

  
 

0

0 I

M
M

1

1

1

atm atm

coupled k k

k oc

coupled

e oce

k k

x x
x

x x







    
       
    

M

Coupled forecast model:

 
1

0 01 1( ) ( ( ))a a T T T T a

k k kx x y x


 
     P H H PM M M RHM H M

0

AO

c

AA

OO

oupled

OA

 
  
 

P
P

P

P

P

Coupled initial-time covariance:

rtm coupled cou

a

pled

tm atm

radiance

ococ eanean

x
y

x
x

   
     

   

J
H

J

Coupled TLM/ADJ of the observation operator:

14



Modification to the P0 coupling: 
the interface solver

Data assimilation coupled through initial time covariance 
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• Assume that within the DA cycle
• Atmospheric boundary layer (BL) and ocean mixed layer (ML) are coupled
• Free atmospheric (fA) and deep ocean (dO) are NOT coupled

• Implement “interface solver” approximation by extending existing DA systems using ensemble covariances. 
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An example of the interface solver 

• Hybrid-4DVAR maintains an 
ensemble of 80 cycling atmospheric 
states. 

• Each atmospheric member cycles 
their own version of diurnal SST and 
land surface model. 

• Additional time-space-correlated 
noise is added to the foundational 
SST to simulate the lack of a dynamic 
ocean model. 
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Land surface model
Diurnal SST model

Atmosphere 

Foundation SST from analysis +red 

noise

Ensemble of coupled atmospheres 

In collaboration with: C. Bishop, B. Ruston, D. Kuhl, N. Barton. J. McLay, M. Flatau, B. Campbell



In collaboration with: C. Bishop, B. Ruston, D. Kuhl, N. Barton. J. McLay, M. Flatau, B. Campbell

An example of a coupled increment 
from the interface solver 

17

Earth surface temperature increment Surface air temperature increment 

Large changes over land. 
Coupling of increments 
over land has likely diurnal 
signal

Some changes to ocean temperature are 
likely generated to balance atmospheric 
increments 

Correction of EST is “speckly” because we used 
overly simplified static error covariance 



Definitions: coupling through tangent Linear 
and Adjoint

Data assimilation coupled through Tangent Linear and Adjoint
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• The coupled DA opportunity and challenge

• Part 1: Algorithmic consideration for coupled DA

• Challenge 1: Approximations to the strongly coupled data assimilation 

• Challenge 2: Mitigating for differences in space and time scales between Earth system 
components 

• Part 2: Recent insights in to the coupling of atmospheric and oceanic temperatures

• Part 3: Low hanging fruit for coupled DA

Outline
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An example of a real system (US NRL)

20

NAVGEM (~19 km/80 levels)
Hybrid-4DVAR (~100 km)

HYCOM (1/25° 41L)
3DVAR (1/8 °)

Ice (1/8°)

3DVAR
Land 

surface

Very different dynamics, scales, 
maturity, communities, concerns, 
and resolutions, suggesting that 

interface solver might be a good fit.

• Length scales differ an order of 
magnitude:

• Gulfstream: max of 2 m/s, av. 0.2 m/s

• Jet stream: max of 50 m/s; av. 10 m/s

• Observation data delays:
• Atmosphere: ~1 hours

• Ocean: Altimeter can be ~24 hours

• Observation coverage:
• Atmosphere: almost complete coverage in 

12 hours

• Ocean: complete coverage for ARGO in 10 
days

• Global forecast and model resolution 
differ

• Atmosphere: 13km forecast and 33km anal.

• Ocean: 4km forecast and 12km anal.



Coupled DA challenge 2: 
Interplay between resolution and timescales
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aCFL—analysis Courant-Fletcher Levy number:
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Coupled DA challenge 2: 
Interplay between resolution and timescales
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Coupled DA challenge 2: 
Interplay between resolution and timescales
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Best guess at the appropriate DA algorithm 
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Based on reports at the CDA workshop, Toulouse (2016)

Used the following information for existing systems

System Fluid dx Twin Alg.

NRL Ocean 12 24 3DVAR

Atm 100 6 H4DVAR

CERA Ocean 100 24 3DVAR

Atm. 100 24 ol-4FVAR

UKMO Ocean 25 6 3DVAR

Atm. 80 6 4DVAR



Timescales in Coupled DA: UKMO
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6h

3-13 grid cells
at 80 km analysis

4DVAR

• Single (shortest) cycle:
• Atm: 4DVAR single outerloop

• Ocean: 3DVAR

• Results at NRL show that 6-h ocean 
3DVAR degrades forecast skill in 
Western boundary conditions

• Degraded skill because of the delays in 
the delivery of the altimeter data makes 
this system impractical for the Navy 
application

6h

0.2-2 grid cells
At ¼ deg analysis

3DVAR

Information travels
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Based on reports at the CDA workshop, Toulouse (2016)



Timescales in Coupled DA: ECMWF reanalysis
O

ce
an

A
tm

o
sp

h
er

e • Single (longest) cycle:
• Atm: 4DVAR multiple outerloops

• Ocean: 3DVAR

• Special case of a CERA-centenial
reanalysis with a 1 degree model 

• Does not assimilate satellite 
observations (e.g. not competitive with 
operational NWP)24h

0.2-2 grid cells
At 1 deg analysis

9-43 grid cells
At 1 deg analysis

24h

Information travels
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Timescales in CDA: NRL ESPC system
O

ce
an

A
tm

o
sp

h
er

e

6h

10-2 grid cells
at 100 km analysis

Hybrid-4DVAR

• Mixed cycles:
• Atm: 6-h 4DVAR single outerloop

• Ocean: 3DVAR

• Goal is to deliver a system with at least 
as good performance as the 
operational atmospheric and oceanic 
systems

• This analysis suggests that both DA 
systems have room for an upgrade:

• Atm: higher resolution increment

• Ocean: Aspects of flow-dependent analysis 
can be beneficial in WBC

24h

10-1 grid cells
At 16 km analysis

3DVAR

6h6h6h

Information travels
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• The coupled DA opportunity and challenge

• Part 1: Algorithmic consideration for coupled DA

• Part 2: Recent insights in to the coupling of atmospheric and oceanic temperatures
• Role of the outerloop in coupling 

• Part 3: Low hanging fruit for coupled DA

Outline
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Role of the outerloop in coupling 

Slide borrowed from P Laloyaux
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Global patterns of coupling between SST and 2m air temp:
regional patterns

Absolute value of the correlation between SST and the 

surface air temperature 

Dataset: 
• ECMWF CERA reanalysis
• In-situ data is assimilated using 24-hour 

assimilation cycle
• Both ocean and atmosphere is 1 deg resolution

Methods:
• Using 25 coupled ensemble members (Feb and 

Aug 2005), compute instantaneous 24-hour 
forecast error correlations 

• Average instantaneous correlations. 

Average ensemble correlation for 

August 2005

Laloyaux et al. (2018) QJ Original insight Feng et .al.2016
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Global patterns of coupling between SST and 2m air temp:
regional patterns

Absolute value of the correlation between SST and the 

surface air temperature 

(a) Strong coupling in eastern tropical Pacific and Atlantic
• Shallow MLD (ocean can respond to atmosphere)
• Precipitation is modulated by strong gradients in the SST

(b) No coupling in the Warm Pool
• Deeper MLD
• Weaker gradients in the SST
• Omnipresent convection acts like white noise to 

the ocean with deep mixed layer
• Weak lagged coupling when clouds shade SST 

following a convective event

(c) Seasonal coupling in mid-latitudes
• Stronger coupling in summer hemisphere, when MLD is 

shallower.  

Average ensemble correlation for 

August 2005

Laloyaux et al. (2018) QJ Original insight Feng et .al.2016
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Global patterns of coupling between SST and 2m air temp:
vertical extent of coupled correlations

Absolute value of the correlation between SST and the 

surface air temperature 

Average ensemble correlation for 

August 2005

(a) Tropical EPAC (b) Mid-latitude 

shallow MLD

(c) Mid-latitude 

deep MLD
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For the three locations and 6 dates (3 in Aug. and 
3 in Feb. ), we conducted single observation 
studies where we evaluated impact of 
assimilating 5m ocean temperature on the 
atmospheric analysis. 

Average, localized ensemble correlations 

between SST and coupled state

TEPAC

SPAC

NPAC

Laloyaux et al. (2018) QJ
31



Role of the outerloop in coupling

Ocean 
analysis

Ocean 
background

Ocean 
increment

Assimilation window (hour)
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Top level in the ocean and bottom level in the atmosphere
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Role of the outerloop in coupling

Assimilation window (hour)

Er
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r 
(°

C
)

Atmos
analysis

Atmos
background

Atmospheric response to the ocean observation happens in few hours

Ocean 
background

Ocean 
increment

Top level in the ocean and bottom level in the atmosphere

Atmos
response

Ocean 
analysis
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Comparing outerloop with strongly coupled KF 
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In addition to CERA outerloop 
results, we computed a two-
point KF analysis based on 
covariance computed from 25 
CERA members
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Comparing outerloop with strongly coupled KF 

Response time of the atmosphere 
to assimilation of the SST ob.

Forecast lead time

Trop. East Pac.

Mid. Lat. shallow MLD

Mid. Lat. Deep MLD

Average atmospheric surface temp. error 
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Results:
• (top) average performance of the strongly coupled and outerloop 

coupled DA is similar.
• (right) Ocean and atmosphere synchronize within the first 10-20 hours .



Role of the outerloop in coupled DA

CERA increments from 6 

single-ob. experiments
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Interpretation:
• (left) in CERA system, it takes multiple outerloop to converge on the 

atmospheric state, but only one iteration for the deep ocean. This suggests 
that outerloop is primarily needed to support atmospheric DA in CERA. 

• (right) Outerloop is effective at moving synchronization within the DA 
window. However, this is best done with windows > 12 hours. 

KF

*

Results of a single ob. experiment at 

the TEPAC location 

Outerloop approximates strong 
coupling poorly at the begining
of the window

Outerloop approximates strong coupling well 
after 12 hours

Forecast tau (hours)

Laloyaux et.al. (2018) QJ
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The coupled DA challenge 1: 
Synchronization of the forecast
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True 

True 

Forecast lead time

Forecast lead time

Forecast

Forecast

Atm. temp. analysis is away from truth 
because few direct observation of low-
level atmospheric temperature are 
available over the ocean 

Ocean temp. analysis is close to truth 
because plentiful SST observations are 
available over the ocean 

How long does it take for the ocean and atmospheric 
models to synchronize (balance) and converge on “truth” 

Key questions addressed by methods 
development: 
• How long does it take to 

synchronize?
• Can the synchronization time be 

moved within the data assimilation 
window?

• Is it sufficient to rely on the forecast 
model for synchronization? 
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• The coupled DA opportunity and challenge

• Part 1: Algorithmic consideration for coupled DA

• Challenge 1: Approximations to the strongly coupled data assimilation 

• Challenge 2: Mitigating for differences in space and time scales between Earth system 
components 

• Part 2: Recent insights in to the coupling of atmospheric and oceanic temperatures

• Part 3: Low hanging fruit for coupled DA

Outline
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Low hanging fruit

ECMWF ensemble correlation (1 deg)
February 2005

ESPC ensemble correlation (on NAVGEM grid)
February 2017

Absolute value of air temperature-Earth surface correlation 
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New features due to 
ocean mesoscale fronts

abs(correlation)

Same features 
in TEPAC New features in the 

WPAC and Indian ocean 
(salinity boundary layer?)



Lightweight Coupled DA OSSE

• First guess: ensemble mean

• True state: an out-of-sample ensemble member

• Observation error: added to the truth and accounted for in the KF

• Covariance: based on 25 CERA ensemble members

• Forecast lead: 24 hour forecast

True state of the air T over sea ice

Predicted air T from 
“observed” ice T

 

|

2 2

.

T T T T

c

a true

air air ice ice

air air ice ice

ice ob error



 

 

    
 




k

k

for each point i,j solve the following scalar eq:
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Observations Predicted 
state

RMSE red.(%) Comments

SST Surface air 
temp.

2% globally Significant error reduction (20%) in marginal seas, 
around the ice edge, and TEPAC region

Significant wave height 
(from altimeter)

Surface wind 
speed

10% Improvements are localized to large winter storms

Significant height of wind 
waves 
(currently not observable)

Surface wind 
speed

50-60% This observation might be available from the next-
generation SAR

Ice temperature Surface air 
temp.

40-60% Significantly better in winter, when the temperatures 
are below freezing 

Ice velocity Surface wind 40-60% Good year round, better in S. Hemisphere where errors 
are larger. 

OSSE results using the CERA ensemble

In collaboration with: P Laloyaux; JR. Bidlot

• How will these results change in a high-resolution ensemble (e.g. NRL’s ESPC)?
• Do we have any indication that coupled DA can help constrain MLD or ocean velocities?
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Plans for the NRL coupled system (2019-2022)
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NAVGEM (~19 km/80 levels)
Hybrid-4DVAR (~100 km)

HYCOM (1/25° 41L)
Hybrid-3DVAR (1/8 °)

Ice (1/8°)
3DVAR

Land surface

Assimilate ice observations

(conc., temp, velocity) 

into atm. H4DVAR Assimilate low-peaking channels by 

including SST as a state in the atm. 

H4DVAR

Assimilate (1) 

scatterometer winds, and 

(2) atm. flux properties 

retrieved from microwave 

sounders

Assimilate ice observations in 

to ocean H3DVAR

(conc., temp, velocity) 



Conclusions

Working hypothesis: 
• Currently: The forecast skill will degrade if we implement strongly-coupled 

DA right now (due to our poor knowledge of the coupled error covariance).

• In 3-7 years: Implement approximations to the strongly coupled DA that will 
allow us to refine the coupled error covariance and, at the same time, control 
the strength of the coupling. 

• In 7+ years: Merge the software environment for ocean/ice/atmosphere DA. 
Even if we choose to use different solvers in ocean and atmosphere, it 
would be good if we can borrow components from either system at will. 
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Weakly coupled DA Strongly coupled DA

Stronger coupled DA
(e.g. outer loop coupling, interface solver)



End
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1) Coupling through dynamics along requires large assimilation windows (12-24 hours)

• Additional benefits are realized when DA is also coupled through observational operator and initial 
time-covariance

2) One algorithms is unlikely to be appropriate for all fluids at the same time

• In practical applications, synchronization of assimilation windows is the key challenge

3) Correlations from coupled ensembles can be used to focus the development of CDA applications

• With large gains to be realized in the polar regions, over land, parts of the oceans. 
45

Summary 



Status-quo:
• Polar regions currently have very poor 

observing networks. 

• Current DA systems use very little of the 
existing and abundant ice observations.

Opportunity:
• Assimilate ice drift and surface ice 

temperature to fully exploit 

• Understand impact of the additional constrain 
on high impact weather events (rapid ice loss 
and sever winter storms) 

Coupled DA over ice is an obvious low-hanging fruit

Ensemble spread for surface pressure 
is largest over the Arctic 

Arctic is poorly observed
In current NWP systems

Red dots show locations of ice 
velocity measurements that can 
help to constrain the Artic forecast   In collaboration with: N. Barton, R. Allard, and P. Posey
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Opportunity for Hybrid ocean DA

In collaboration with: C. Bishop, OM. Smedstad, C. Rowley, P. Hogan, and C. Baron

• ESPC ensembles (an early look of ensemble spread for SSH from 10 members above) 
show promise at characterizing uncertainty in location and strength of fronts in highly-
energetic ocean boundary currents

• This information can be exploited at very little additional cost by the Hybrid-NCODA

0

20 cm

f static f

hybrid NCO

ens f

locDA ens P C PP

New addition to NCODA, 
available since 2014 

SSH spread tau=0 SSH spread tau=24
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Our early results with NCOM-COAMPS coupled DA 
(circa 2014)
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• Early results (Frolov et.al. 2016) showed that strongly-
coupled DA can transfer information from the SST 
observation into lower atmosphere. 

• However, we struggled to see any patterns to coupling 
in such a small regional domain. 
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