Coupled reanalysis at ECMWF

Dinand Schepers,

Eric de Boisseson, Roberto Buizza, Giovanna De-Chiara, Dick Dee, Reima Eresmaa, Hans Hersbach, Patrick Laloyaux, Cristina Lupu, Patricia de Rosnay

Dinand.Schepers@ecmwf.int

© ECMWF September 13, 2018

Reanalysis

Reanalysis offers a detailed overview of the past atmosphere Earth system

- **Complete**: combining vast amounts of observations into (global) fields
- **Consistent**: use the same physical model and DA system throughout
- State-of-the-art: use the best available observations and model at highest feasible resolution

Reanalysis allows for a close monitoring of the Earth's climate system also where direct observations are sparse.

Reanalysis (II)

Reanalyses of the modern observing period (~30-50 years):

- Produce the best state estimate at any given time (as for NWP)
- Use as many observations as possible, including from satellites
- Closely tied to forecast system development and evaluation
- Can support product updates in near-real time

Extended climate reanalyses (~100-200 years):

- As far back as the instrumental record allows
- Pioneered by NOAA-CIRES 20th-Century Reanalysis Project
- Long perspective needed to assess current changes

20CR

(C)ERA-20C

1938

JROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

- Main focus is on consistency, low-frequency variability
- Use only a restricted set of observations

900

surface

Reanalysis (III) – The ECMWF reanalysis landscape

Outline - Coupled reanalysis at ECMWF

- Reanalysis An introduction
- A quick recap how did we get where we are now?
 - Pioneering work done in the ERA-CLIM and ERA-CLIM2 projects
- A pilot for coupled reanalysis in the satellite era: CERA-SAT
 - Assimilation approach and system setup
 - Preliminary assessment of performance
- Current reanalysis (and related) activities at ECMWF
 - ERA5
 - Copernicus Climate Change Service (C3S)

ERA-CLIM project (2011-2013)

Goal: Preparing input observations, model data, and data assimilation systems for a global atmospheric reanalysis of the 20th century

Main components:

- Data rescue (in-situ upper-air and satellite observations)
- Incremental development of new 20C reanalysis products
- Use of reanalysis feedback to improve the historic data record
- Access to reanalysis data and observation quality information

ERA-20CM

Radiative forcing

- Although there are certainly model biases:
- ERA-20CM gives good reference of low-frequency variability
- Well suited to project global warming and major events onto other geophysical quantities not directly provided in the forcing data

ERA-CLIM project – ERA-20C

Century-long climate reanalysis using surface observations only

ISPD 3.2.6 and ICOADS 2.5.1 pressure observations assimilated in ERA-20C¹

The British

and erce

fore eer-

bar rteđ

100

owore.

uesrom ter-

sen-two ale, This ime folbunlf a had ting suc-the hen She

orm On had verv

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

1) Poli et al, J. Climate 2016 ; ERA-20C Observation Feedback Archive available at www.ecmwf.int/research

ERA-CLIM2 project (2014 - 2017)

Goal: Production of a consistent 20thcentury reanalysis of the coupled Earthsystem: atmosphere, land surface, ocean, sea-ice, and the carbon cycle

Main components:

- Production of coupled reanalyses, for 20C and the modern era
- Research and development in coupled data assimilation
- Earth system observations for extended climate reanalyses
- Evaluation of uncertainties in observations and reanalyses

ERA-CLIM2 project – CERA-20C

Century-long climate reanalysis using surface observations only (like ERA-20C), but coupled with the ocean and sea ice

CERA-20C **ERA-20C** 07003/7 15,024 15302 25/01/7 25/01 0.012 05/01/2 17/12/7 17/12/7 27/11/25 27/11/ 10106 0.006 021116 0711/ 18/10/73 18/10/3 E 29:1973 0.000 28/39/7 08/09/7 08/09/2 19/08/75 19/08/ 004 30/07/73 10/07/73 10/07/7 201675 20/06/7 012 0.012340673 34/05 11/05/73 11/05/ 018 21/044 21/04/7 Locollude Longitude

high-pass filtered SST (colour) and wind stress (contour)

CERA-20C

- represents TIWs thanks to the ocean dynamics
- atmosphere responds accordingly (surface wind stress is sensitive to the ocean TIW)

ERA20C

 no TIWs or wind stress signals (forced by monthly SST)

Courtesy of Eric de Boisseson

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Laloyaux et al. QJRMS; 2016, Laloyaux et. al MWR 2016; Laloyaux et al. JAMES 2018.

Example: Tropical instability waves (westward-propagating waves near the equator)

ERA-CLIM2 project – CERA-SAT

A pilot for coupled reanalysis of the satellite era, using a higher resolution ocean component and the full, modern observing system "Whilst Earth system modelling is already in its early stages, its application to data assimilation is very novel and results could be groundbreaking"

Roadmap to 2025

ECMWF

THE STRENGTH OF A COMMON GOAL A ROADMAP TO 2025

ERA-CLIM2 project – CERA-SAT

Atmosphere/Land

- Model: IFS (CY42R1, April 2016)
- Atmosphere Resolution: TL319 (~60 Km); 137 levels
- Assimilation: 24-hour window 4D-Var
- Full observing system : ERA5 observing system
- Land surface analysis: Dedicated; Weakly coupled

Ocean/Sea ice

- Model: NEMO / LIM2 (CY42r1)
- Resolution (1/4 degree; ORCA025) ~30 km; 75 levels
- Assimilation: 24-hour window 3D-Var FGAT
- **Observations:** salinity and temperature profiles, SSH, SI analysis (OSTIA L4)

Wave

- Model: WAM (CY42R1)
- **Resolution:** 0.5 degree
- Assimilation: 24-hour window
- Observation: ERA5 observing system

CERA – Outer loop coupled assimilation

Full observing system

- SYNOP, radiosondes, radiances, scatterometer, etc.
- Screen level, snow depth and cover, soil moisture, etc.

Salinity and Temperature

- Subsurface profiles of salinity and temperature
- EN4.1.1 dataset
- Sea surface height

SST and sea ice analysis

OSTIA 0.05° product sea ice concentration (L4)

SST nudging

CERA-SAT – A pilot for satellite era coupled reanalysis

- 10-member ensemble of data assimilations (EDA)
- Available between 2008 and 2016 (produced in 4 streams)
- Uncoupled CTRL for assessment studies

CERA-SAT – Improved fit to observations

Control-normalized standard deviation of background departure

- Global, 1-year sample (1 Sept 2015 31 Aug 2016)
 - Improvements in Temperature btw 300—1000 hPa Wind btw 100-300 hPa

Bars indicate 95% confidence intervals

CTRL: Uncoupled, atmosphere/land/wave analysis and forecasts

CERA-SAT – Improved fit to observations

Control-normalized standard deviation of background departure

- global 1-year sample (1 Sept 2015 31 Aug 2016)
- Improvements in

AMSU-A microwave radiance channels 9—14

Microwave humidity sounder radiances

Radio occultation data btw 15—35 km

Bars indicate 95% confidence intervals

CTRL: Uncoupled, atmosphere/land/wave analysis and forecasts

CERA-SAT – Improved fit to observations (in the Tropics)

0.995

Normalized S.Dev.

1.005

0.995

1.005

Normalized S.Dev.

Courtesy: **ECMWF** Reima Eresmaa, Cristina Lupu

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Normalized S.Dev.

1.0025

0.9975

improvement

CERA-SAT – Improved forecast performance

Forecast improvements at Day+5 in Tropical regions - against own analysis Reduction of forecast error standard deviation

- Temperature: 1.5% 3%
- Relative humidity: 1% 2%
- Vector winds: 4% 5%

CTRL: Uncoupled, atmosphere/land/wave analysis and forecasts

Difference in standard deviation of error (May 2015 – Aug 2016, own analysis)

CERA-SAT – Improved forecast performance

Forecast improvements at Day+5 in Tropical regions - against own analysis

Reduction of forecast error standard deviation

- Tropics pressure about 5 -10 %
- Tropics Z500 about 5 10 %

CTRL: Uncoupled, atmosphere/land/wave analysis and forecasts

Coupled assimilation – Scatterometer denial experiments

Assimilation of scatterometer winds benefits ocean salinity

Reduction of salinity background and analysis departures

CERA-SAT – Global ocean heat budget

Global ocean heat budget decomposition - Comparing CERA-SAT and ORAS5

- Total global heat content rate of change (Black) very similar
- Although contributions from individual sources differ significantly

CERA-SAT – place among other ECMWF reanalyses

Forecast performance for Europe - compared to operational ECMWF reanalyses

Number of days after which AC (%) falls below threshold

- CERA-SAT outperforms ERA-Interim
- CERA-SAT underperforms w.r.t. ERA5
- Note the temporal variations

State-of-the-art, operational reanalysis

- High resolution (TL639)
- 12-hour assimilation window
- 'Uncoupled' atmosphere/land/wave only

Experimental, pilot reanalysis

- Moderate resolution (TL319)
- 24-hour assimilation window
- Outer loop coupled

ERA5 – State of the art reanalysis

Hourly data throughout and more parameters

Uncertainty estimate Spread in Surface Pressure (hPa)

January 1979

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

ERA5 – State of the art reanalysis

	ERA-Interim	ERA5	
Period	1979 – present	Initially 1979 – present, later addition 1950-1978	
Streams	1979-1989, 1989-present	Parallel streams, one/two per decade	
Assimilation system	2006, 4D-Var	2016 ECMWF model cycle (41r2), 4D-Var	
<i>Model input</i> (radiation and surface)	As in operations, <i>(inconsistent sea surface temperature)</i>	<i>Appropriate for climate</i> , e.g., evolution greenhouse gases, volcanic eruptions, sea surface temperature and sea ice	
Spatial resolution	79 km globally 60 levels to 10 Pa	31 km globally 137 levels to 1 Pa	
Uncertainty estimate		Based on a 10-member 4D-Var ensemble at 62 km	
Land Component	79km	ERA5L, 9km (separate, forced by ERA5)	
Output frequency	6-hourly Analysis fields	 Hourly (three-hourly for the ensemble), Extended list of parameters ~ 9 Peta Byte (1950 - timely updates) 	
Extra Observations	Mostly ERA-40, GTS	Various reprocessed CDRs, latest instruments	
Variational Bias correction	Satellite radiances, radiosondes predetermined	Also ozone, aircraft, surface pressure, newly predetermined for radiosondes.	

ERA5 – State of the art reanalysis

Forecast performance for Northern / Southern hemisphere - compared to ERA-Interim

Number of days after which AC (%) falls below threshold

C3S – Climate data store

C3S – Climate indicators

	Surface temperature Greenhouse gases		
	Rain	_	Credit: Victor & Kennel, Nature Climate Change, 2014.
$\overline{\langle}$	Sea Ice		Greencus European State European Climate of the 0517
	Glaciers		Coperation 2011
	Sea Level		European of the Cli 2017
	Soil Moisture	Ļ	Contraction Commission

C3S – Climate Data Store

PANGE WEATHER FORECASTS

The CDS contains **observations**, global and regional **climate reanalyses**, global and regional **climate projections** and **seasonal forecasts.** It also contains generic and **sectoral climate indicators**.

The CDS is designed as a distributed system, providing improved access to existing datasets through a unified web interface.

cds.climate.copernicus.eu

Where next?

C3A provides for operational production of reanalyses, envisioning a regular upgrade cycle

- Centennial reanalyses based on limited historical observations
- Reanalyses of the modern era
- Based on ECMWF operational models (following operational drive towards coupling)

Final remarks

Reanalysis activities at ECMWF have produced a sizable body of experience –and data sets- regarding Earth system assimilation in the context of limited, historical observations systems (CERA-20C) as well as for modern-day assimilation scenarios (CERA-SAT).

State of the art –uncoupled – operational reanalysis production is now undertaken at ECMWF by the Copernicus Climate Change Service (C3S). Future, coupled reanalyses are envisioned within C3S, leveraging operational model developments towards Earth system assimilation as well as external reprocessing and data rescue efforts.

For now, the vanguard of coupled reanalysis at ECMWF is represented by CERA-SAT, publicly available through MARS.

EUROPEAN CENTRE FOR MEDI

Ensemble spread – Coupled vs. uncoupled

10-member ensemble spread for Temperature

- Lower ensemble spread in coupled experiment
- June 2015 May 2016
- Signal consistent in time (no apparent seasonality or change in time)

Hypothesis: Nudging to external SST analysis in coupled setup is stricter (too strict?) than SST perturbation in uncoupled.

