Coupling through the observation operator

Alan Geer

Thanks to: Patricia de Rosnay, Yoichi Hirahara, Katrin Lonitz, Niels Bormann, Phil Browne, Steffen Tietsche, Stephen English, Cristina Lupu

NERC Satellite Receiving Station, Dundee University, Scotland, http://www.sat.dundee.ac.uk/ are thanked for providing GOES and AVHRR imagery
ECMWF FSOI February 2018: 70% of 24h forecast impact comes from satellite data
Fig. 3 Scatter diagrams comparing the anomaly correlation of operational forecasts (horizontal axis) and "NO-SATEM" forecasts (vertical axis), for 15 cases in February 1987.

Pailleux et al. (1989, TM159)
AMSU-A clear-sky weighting functions

(Channels 8-14 don’t see surface – not shown)
What is a satellite observation?
SSMIS F-17 channel 13 (19 GHz, v)
Microwave brightness temperatures
3rd December 2014

Ocean waves, wind, skin temperature
Atmospheric water vapour and temperature
Cloud and precipitation
Deep fresh snow
Sea-ice

Assimilated in atmospheric analysis

Snow cover
High altitude / snow
Land surface temperature, biomass, soil/rock, soil moisture

Used via OSTIA
\[y = H \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ \vdots \end{pmatrix} \]

All-sky, all-surface microwave radiance observation

Atmospheric temperature, water vapour, wind, cloud, precipitation

Skin and substrate temperature and moisture

Ocean wind, waves, foam

Sea-ice

Snowpack

Ice

Vegetation

Soil
Atmospheric temperature, water vapour, wind, cloud, precipitation

Skin and substrate temperature and moisture

Ocean wind, waves, foam

Sea-ice

Snowpack

Ice

Vegetation

Soil

\[
\begin{bmatrix}
\delta x_1 \\
\delta x_2 \\
\delta x_3 \\
\delta x_4 \\
\delta x_5 \\
\delta x \ldots
\end{bmatrix} = H^T \delta y
\]

All-sky, all-surface microwave radiance observations
Approximations:
- Local linearity of observation operator and model
- Gaussian errors

\[x_a = x_b + BM^T H^T (HMBM^T H^T + R)^{-1} (y^o - H(M(x_b))) \]
\[x_a = x_b + BM^T H^T (HMBM^T H^T + R)^{-1} (y^o - H(M(x_b))) \]

Mapping and weighting into analysis space

Weighting of background departures in observation space
Atmospheric temperature, water vapour, wind, cloud, precipitation

Skin and substrate temperature and moisture
Ocean wind, waves, foam
Sea-ice
Snowpack
Ice
Vegetation
Soil

\[\mathbf{BM}^T \mathbf{H}^T \]
\[x_a = x_{\alpha b} = \mathbf{b} \mathbf{M}^T \mathbf{H} \mathbf{H}^T (\mathbf{H} \mathbf{B} \mathbf{H}^T + \mathbf{R})^{-1} (\mathbf{y} (y^0 H(\mathbf{M}(x_b)))) \]
Radiance observation \(y = H \left[\begin{array}{c} T_{\text{atmos}} \\ T_{\text{sfc}} \end{array} \right] \)

Atmospheric temperature
Surface temperature
\[
\begin{bmatrix}
T_{\text{atmos}}^a \\
T_{\text{sfc}}^a
\end{bmatrix}
= \begin{bmatrix}
T_{\text{atmos}}^b \\
T_{\text{sfc}}^b
\end{bmatrix} + \begin{bmatrix}
b_{\text{atmos}} & b_{\text{atmos-sfc}} \\
b_{\text{atmos-sfc}} & b_{\text{sfc}}
\end{bmatrix} H^T \left(H \begin{bmatrix}
b_{\text{atmos}} & b_{\text{atmos-sfc}} \\
b_{\text{atmos-sfc}} & b_{\text{sfc}}
\end{bmatrix} H^T + r \right)^{-1} \left(y^o - H \begin{bmatrix}
T_{\text{atmos}}^b \\
T_{\text{sfc}}^b
\end{bmatrix} \right)
\]

Coupling through the background errors
\[
\begin{bmatrix}
T_{\text{atmos}}^a \\
T_{\text{sfc}}^a
\end{bmatrix} =
\begin{bmatrix}
T_{\text{atmos}}^b \\
T_{\text{sfc}}^b
\end{bmatrix} +
\begin{bmatrix}
b_{\text{atmos}} \\
0
\end{bmatrix}H^T \left(H \begin{bmatrix}
b_{\text{atmos}} \\
0
\end{bmatrix}H^T + r \right)^{-1} \left(y^o - H \begin{bmatrix}
T_{\text{atmos}}^b \\
T_{\text{sfc}}^b
\end{bmatrix} \right)
\]
How to solve it for the atmosphere

• Pretend the problem is separable:
 – Retrieve surface first, using some simplified retrieval, then use it as a parameter for the atmosphere?
 • Examples: Assimilation of OSTIA, dynamic surface emissivity retrieval

• Augmented control vector
 – Treat the surface as a sink variable
 • Examples: assimilation of clear-sky IR and microwave radiances

• Treat the missing information as a parameter of the observation operator
 – Parameter error adds to the observation error
 • All the missing parameters that we forget about: e.g. Particle size distribution for all-sky assimilation

• Coupling
 – Outer loop coupling
 – Full coupling
Pretend the problem is separable – solve for surface and then atmosphere.
Pretend the problem is separable – solve for surface and then atmosphere

\[
\begin{bmatrix}
T_{\text{atmos}}^b \\
T_{\text{sfc}}^a
\end{bmatrix} = \begin{bmatrix}
T_{\text{atmos}}^b \\
T_{\text{sfc}}^b
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
0 & b_{\text{sfc}}
\end{bmatrix} H^T \left(H \begin{bmatrix}
0 & 0 \\
0 & b_{\text{sfc}}
\end{bmatrix} H^T + r \right)^{-1} \left(y^o - H \begin{bmatrix}
T_{\text{atmos}}^b \\
T_{\text{sfc}}^b
\end{bmatrix} \right)
\]

\[
\begin{bmatrix}
T_{\text{atmos}}^a \\
T_{\text{sfc}}^a
\end{bmatrix} = \begin{bmatrix}
T_{\text{atmos}}^a \\
T_{\text{sfc}}^a
\end{bmatrix} + \begin{bmatrix}
b_{\text{atmos}} & 0 \\
0 & 0
\end{bmatrix} H^T \left(H \begin{bmatrix}
b_{\text{atmos}} & 0 \\
0 & 0
\end{bmatrix} H^T + r \right)^{-1} \left(y^o - H \begin{bmatrix}
T_{\text{atmos}}^b \\
T_{\text{sfc}}^b
\end{bmatrix} \right)
\]
Problems with using external retrievals -

- Suboptimal
- Gross errors are hard to characterise

OSTIA sea-ice, 20th January 2018

OSTIA sea-ice, 21st January 2018

 Courtesy daily report and Phil Browne
When something goes wrong

• We assimilate OSTIA which assimilates OSI-SAF retrievals from SSMIS radiances….
 – How is the bias correction done?
 – How are data anomalies handled?
 – How is cloud / precipitation detected and “removed”?
 – How is wind roughening of ocean surface treated?

All-sky, all-surface data assimilation
Sea ice and 19 GHz retrieved emissivity – Baordo+Geer 2015 at a point over the arctic sea-ice, Feb 2015

36h delay?
Issues with assimilating retrievals of surface properties

- Even if other parts of the system are modelled, their background values have errors
 - Modelling of e.g. the atmospheric component may not be as sophisticated as used for atmospheric DA

- They are done externally and independently
 - There can be significant processing delays
 - Long and vulnerable processing chains: We assimilate OSTIA which assimilates OSI-SAF retrievals from SSMIS radiances…
 - External centres may not have available the wide range of satellite monitoring, QC, bias correction

The most up-to-date and accurate state of the rest of the system comes from the analysis: direct coupled radiance assimilation is optimal

Benefit from existing sophisticated modelling for atmospheric radiance assimilation

Ingest the L1 data in-house

The treatment of satellite radiances for the atmosphere includes all this (bias correction, keeping up with new satellites)
Augmented control vector

\[
\begin{bmatrix}
T_{\text{atmos}}^a \\
T_{sfc}^a
\end{bmatrix}
= \begin{bmatrix}
T_{\text{atmos}}^b \\
T_{sfc}^b
\end{bmatrix}
+ \begin{bmatrix}
 b_{\text{atmos}} & 0 \\
0 & b_{sfc}
\end{bmatrix}
H^T
\left(H \begin{bmatrix}
 b_{\text{atmos}} & 0 \\
0 & b_{sfc}
\end{bmatrix} H^T + r \right)^{-1}
\left(y^o - H \begin{bmatrix}
T_{\text{atmos}}^b \\
T_{sfc}^b
\end{bmatrix} \right)
\]

And in a more realistic system:

- We are missing \(M^T\) to help constrain the surface solution
- Wouldn’t it be great to improve \(T_{sfc}\) with observations from the surface assimilation?
Augmented observation error

\[
\begin{bmatrix}
T^a_{\text{atmos}} \\
T^b_{\text{sfc}}
\end{bmatrix} = \begin{bmatrix}
T^b_{\text{atmos}} \\
T^b_{\text{sfc}}
\end{bmatrix} + \begin{bmatrix}
b_{\text{atmos}} & 0 \\
0 & 0
\end{bmatrix} H^T \left(H \begin{bmatrix}
b_{\text{atmos}} & 0 \\
0 & 0
\end{bmatrix} H^T + r' \right)^{-1} \left(y^o - H \begin{bmatrix}
T^b_{\text{atmos}} \\
T^b_{\text{sfc}}
\end{bmatrix} \right)
\]

\[
r' = r + H \begin{bmatrix}
0 & 0 \\
0 & b_{\text{sfc}}
\end{bmatrix} H^T
\]
Outer loop coupling

• Separable observation operator?
 – From the atmosphere, can the surface be described as e.g. a skin temperature, emissivity, and bidirectional reflection distribution function?
 – From the surface, can the atmosphere be described as e.g. a single transmittance, an emitting temperature?

• Inseparable observation operator?
 – Need to run both surface and atmospheric operators coupled together
 – All relevant atmospheric and surface state needs to be available in both the atmospheric and surface analysis
Any more catches?

We need better forward modelling

Models need to represent the relevant physical properties
Any more catches?

We need better forward modelling

Models need to represent the relevant physical properties
Forward modelling of ocean surface radiative transfer

- Wave and capillary structure at all scales
- Foam and whitecapping
- Rain ripples
- Active (e.g. scatterometer) and passive (all spectrum)
- Skin layer (temperature profile)
Figure 1. Multilayered medium modeled by SMRT. The incident radiation I_0 comes either from a radar beam (active mode) or from the sky (passive mode with atmospheric contribution).
Any more catches?

We need better forward modelling

Models need to represent the relevant physical properties
Example of all-sky data assimilation

- Model does not have a sufficient representation of microphysical and macrophysical parameters to which the all-sky radiances are sensitive, but we can still get great impact from this data

Parameter error = Observation error