Coupling through the observation operator

Alan Geer

Thanks to: Patricia de Rosnay, Yoichi Hirahara, Katrin Lonitz, Niels Bormann, Phil Browne, Steffen Tietsche, Stephen English, Cristina Lupu

NERC Satellite Receiving Station, Dundee University, Scotland, <u>http://www.sat.dundee.ac.uk/</u> are thanked for providing GOES and AVHRR imagery

© ECMWF September 13, 2018

ECMWF FSOI February 2018: 70% of 24h forecast impact comes from satellite data

Fig. 3

Ancient ECMWF history

Pailleux et al. (1989, TM159)

AMSU-A clear-sky weighting functions

What is a satellite observation?

0.6µm VIS

AVHRR 20th August 2018

SSMIS F-17 channel 13 (19 GHz, v) Microwave brightness temperatures 3rd December 2014

All-sky, all-surface microwave radiance $\mathcal{Y}=H$ observation

 x_2 x_3 χ_4 x_5

Atmospheric temperature, water vapour, wind, cloud, precipitation

Skin and substrate temperature and moisture Ocean wind, waves, foam Sea-ice Snowpack Ice Vegetation Soil

All-sky, all-surface δx_2 microwave radiance observations δx_3 $\mathrm{H}^T \delta \mathrm{y}$ δx_4 δx_5

Atmospheric temperature, water vapour, wind, cloud, precipitation

Skin and substrate temperature and moisture Ocean wind, waves, foam Sea-ice Snowpack Ice Vegetation Soil

Approximations:

- Local linearity of observation operator and model
- Gaussian errors

Weighting of background departures in observation space

Atmospheric temperature, water vapour, wind, cloud, precipitation

Skin and substrate temperature and moisture Ocean wind, waves, foam Sea-ice Snowpack Ice Vegetation Soil

$\mathbf{x}_{a} = \mathbf{X}_{bb} \neq \mathbf{B}_{b}^{T} + \mathbf{B}_{b}^{T$

Radiance
$$y = H \begin{bmatrix} T_{atmos} \\ T_{sfc} \end{bmatrix}$$
 Atmospheric temperature Surface temperature

$$\begin{bmatrix} T_{atmos}^{a} \\ T_{sfc}^{a} \end{bmatrix} = \begin{bmatrix} T_{b}^{b} \\ T_{sfc}^{b} \end{bmatrix} + \begin{bmatrix} b_{atmos} & b_{atmos-sfc} \\ b_{atmos-sfc} & b_{sfc} \end{bmatrix} H^{T} \left(H \begin{bmatrix} b_{atmos} & b_{atmos-sfc} \\ b_{atmos-sfc} & b_{sfc} \end{bmatrix} H^{T} + r \right)^{-1} \left(y^{o} - H \begin{bmatrix} T_{atmos}^{b} \\ T_{sfc}^{b} \end{bmatrix} \right)$$

$$\uparrow$$
Coupling through the background errors

$$\begin{bmatrix} T_{\text{atmos}}^{a} \\ T_{\text{sfc}}^{a} \end{bmatrix} = \begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{b} \end{bmatrix} + \begin{bmatrix} b_{\text{atmos}} & 0 \\ 0 & b_{\text{sfc}} \end{bmatrix} H^{T} \left(H \begin{bmatrix} b_{\text{atmos}} & 0 \\ 0 & b_{\text{sfc}} \end{bmatrix} H^{T} + r \right)^{-1} \left(y^{o} - H \begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{b} \end{bmatrix} \right)$$

How to solve it for the atmosphere

• Pretend the problem is separable:

 Retrieve surface first, using some simplified retrieval, then use it as a parameter for the atmosphere?

Examples: Assimilation of OSTIA, dynamic surface emissivity retrieval

- Augmented control vector
 - Treat the surface as a sink variable
 - Examples: assimilation of clear-sky IR and microwave radiances
 - Treat the missing information as a parameter of the observation operator
 - Parameter error adds to the observation error
 - All the missing parameters that we forget about: e.g. Particle size distribution for all-sky assimilation
 - Coupling
 - Outer loop coupling
 - Full coupling

Pretend the problem is separable – solve for surface and then atmosphere

 $\begin{bmatrix} T_{atmostmos}^{a} & T_{atmostmos}^{b} \\ T_{sfc}^{a} & T_{sfc}^{b} \end{bmatrix} \begin{bmatrix} T_{atmostmos}^{b} & T_{atmostmos}^{b} \\ T_{sfc}^{b} & T_{sfc}^{b+} \end{bmatrix} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{bfg} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\ b_{atmos} \end{bmatrix} = T_{atmos}^{T} \begin{bmatrix} b_{atmos} & 0_{0} \\$

Pretend the problem is separable – solve for surface and then atmosphere

$$\begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{a} \end{bmatrix} = \begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{b} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & b_{\text{sfc}} \end{bmatrix} H^{T} \left(H \begin{bmatrix} 0 & 0 \\ 0 & b_{\text{sfc}} \end{bmatrix} H^{T} + r \right)^{-1} \left(y^{o} - H \begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{b} \end{bmatrix} \right)$$

$$\begin{bmatrix} T_{\text{atmos}}^{a} \\ T_{\text{sfc}}^{a} \end{bmatrix} = \begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{a} \end{bmatrix} + \begin{bmatrix} b_{\text{atmos}} & 0 \\ 0 & 0 \end{bmatrix} H^{T} \left(H \begin{bmatrix} b_{\text{atmos}} & 0 \\ 0 & 0 \end{bmatrix} H^{T} + r \right)^{-1} \left(y^{o} - H \begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{a} \end{bmatrix} \right)$$

Courtesy daily report and Phil Browne

When something goes wrong

· We assimilate OSTIA which assimilates OSI-SAF retrievals from SSMIS radiances....

– How is the bias correction done?

How are data anomalies handled? _

- How is cloud / precipitation detected and "removed"? _
- How is wind roughening of ocean surface treated? —

All-sky, all-surface data assimilation

24

STATISTICS FOR RADIANCES FROM MEGATROPIQUE CHANNEL =1, ALL DATA [TIME STEP = 6 HOURS] Area: lon w= 0.0, lon e= 360.0, lat s= -90.0, lat n= 90.0 (over All surfaces) EXP = 0001 (LAST TIME WINDOW: 2018082903)

Sea ice and 19 GHz retrieved emissivity – Baordo+Geer 2015 at a point over the arctic sea-ice, Feb 2015

Issues with assimilating retrievals of surface properties

- Even if other parts of the system are modelled, their background values have errors
 - Modelling of e.g. the atmospheric component may not be as sophisticated as used for atmospheric DA
- They are done externally and independently
 - There can be significant processing delays
 - Long and vulnerable processing chains: We assimilate OSTIA which assimilates OSI-SAF retrievals from SSMIS radiances...
 - External centres may not have available the wide range of satellite monitoring, QC, bias correction

The most up-to-date and accurate state of the rest of the system comes from the analysis: direct coupled radiance assimilation is optimal

Benefit from existing sophisticated modelling for atmospheric radiance assimilation

Ingest the L1 data in-house

The treatment of satellite radiances for the atmosphere includes all this (bias correction, keeping up with new satellites)

Augmented control vector

$$\begin{bmatrix} T_{\text{atmos}}^{a} \\ T_{\text{sfc}}^{a} \end{bmatrix} = \begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{b} \end{bmatrix} + \begin{bmatrix} b_{\text{atmos}} & 0 \\ 0 & b_{\text{sfc}} \end{bmatrix} H^{T} \left(H \begin{bmatrix} b_{\text{atmos}} & 0 \\ 0 & b_{\text{sfc}} \end{bmatrix} H^{T} + r \right)^{-1} \left(y^{o} - H \begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{b} \end{bmatrix} \right)$$

And in a more realistic system:

- We are missing M^T to help constrain the surface solution
- Wouldn't it be great to improve T_{sfc} with observations from the surface assimilation?

Augmented observation error

$$\begin{bmatrix} T_{\text{atmos}}^{a} \\ T_{\text{sfc}}^{b} \end{bmatrix} = \begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{b} \end{bmatrix} + \begin{bmatrix} b_{\text{atmos}} & 0 \\ 0 & 0 \end{bmatrix} H^{T} \left(H \begin{bmatrix} b_{\text{atmos}} & 0 \\ 0 & 0 \end{bmatrix} H^{T} + r' \right)^{-1} \left(y^{o} - H \begin{bmatrix} T_{\text{atmos}}^{b} \\ T_{\text{sfc}}^{b} \end{bmatrix} \right)$$

$$r' = r + \mathbf{H} \begin{bmatrix} 0 & 0 \\ 0 & b_{\rm sfc} \end{bmatrix} \mathbf{H}^T$$

Outer loop coupling

- Separable observation operator?
 - From the atmosphere, can the surface be described as e.g. a skin temperature, emissivity, and bidirectional reflection distribution function?
 - From the surface, can the atmosphere be described as e.g. a single transmittance, an emitting temperature?
- Inseparable observation operator?
 - Need to run both surface and atmospheric operators coupled together
 - All relevant atmospheric and surface state needs to be available in both the atmospheric and surface analysis

Any more catches?

We need better forward modelling

Models need to represent the relevant physical properties

Any more catches?

We need better forward modelling

Models need to represent the relevant physical properties

Forward modelling of ocean surface radiative transfer

- · Wave and capilliary structure at all scales
- Foam and whitecapping
- Rain ripples
- Active (e.g. scatterometer) and passive (all spectrum)
- Skin layer (temperature profile)

Snow Microwave Radiative Transfer – Picard et al. (2018)

G. Picard et al.: Snow Microwave Radiative Transfer model

Figure 1. Multilayered medium modeled by SMRT. The incident radiation I_o comes either from a radar beam (active mode) or from the sky (passive mode with atmospheric contribution).

Any more catches?

We need better forward modelling

Models need to represent the relevant physical properties

Example of all-sky data assimilation

 Model does not have a sufficient representation of microphysical and macrophysical parameters to which the all-sky radiances are sensitive, but we can still get great impact from this data

Parameter error = Observation error

BMTHT