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Introduction

In situ, surface-based observations

I In situ, surface-based observations usually come from sparse monitoring networks.

IThey are of high value because of their accuracy, their frequency, and the direct
access to the instruments.
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IBut afflicted by representation errors. Their measurements are not faulty, only our
inability to simulate them. All observations are impacted by representation errors to
some extend.

Janjić et al., 2018
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Introduction

In situ, surface-based observations

IThe in-situ observations are still critical in atmospheric chemistry, especially air
quality (boundary layer chemistry), in oceanography, etc, in meteorological reanalysis,
boundary layer meteorology and micro-meteorology.

Gas: Global Atmosphere Watch network Lidar: Earlinet network

I Intermediate instruments such as radar/lidar can form sparse networks too.
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Introduction

In situ, surface-based observations

IBecause of the contrasted scales of in-situ observations and models, sparsity calls for
multiscale modelling and data assimilation.
ISparsity of observations affects the balance of background statistics in a cycled data
assimilation −→ strong impact on most reanalysis endeavours, where the observation
network can considerably evolve.

ICalls for:
Fill-in data using geostatistics?
Ensemble-based flow-dependent background error
covariances (EnKF),
Adjustable (ideally adaptive) background error
covariances (EDA-based; diagnostics),
Spatially adaptive inflation schemes: e.g. avoid
inflating in data sparse regions,
The problem gets tougher with coupled models
with heterogeneous observation networks.

ERA-20C innovations RMS −→
Karspeck et al., 2012; Whitaker et al., 2004; Poli et al., 2016; Laloyaux et al., 2018
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Reduction methods

Dimensional reduction

IFor most geophysical data assimilation / inverse problems, only a small
fraction of the control space is actually informed by the observations.

IThis could be for instance due to
the chaotic dynamics: it could be sufficient to control the unstable subspace
and a few extra modes,
or to sparse observations (observation driven reduction?)

IDimension reduction allows
faster computation of the solution and its uncertainty,
the use of sophisticated inference methods (non-linear sampling such as
MCMC),
identification of surrogate models (Polynomial Chaos, machine learning
techniques),

and naturally applies to multiscale DA systems.

IHow does the dimensional reduction impact the accuracy of the solution?
Is there an optimal resolution?
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Reduction methods

Dimensional reduction

IThere may be a competition between:
The aggregation errors
Errors that are due to scale-dependent modelling errors.
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IParadigm discussed by the greenhouse house gases inverse modelling community!
Peylin et al., 2001
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Reduction methods

Inverse modelling context

Context: Inverse modelling of sources σ in atmospheric chemistry
Background B in control space. First guess σb.
R a priori on the observation/model errors
H Jacobian matrix of the problem (observation + model):

µ = Hσ + ε . (1)

BLUE analysis:

σa = σb + BHT (R + HBHT)−1 (µ−Hσb) ,

Pa = B− BHT (R + HBHT)−1 HB . (2)

In the following a representation ω ∈ R(Ω) is a discretisation of the
space-time domain of control (parameter) space Ω.

M. Bocquet ECMWF Annual Seminar 2018, ECMWF, Reading, UK, 10-12 September 2018 9 / 40



Reduction methods

Up and down the scale ladder (1/4)

Restriction and prolongation
Restriction operator : σ −→

coarse graining
σω = Γωσ, where Γω : RNfg → RN defines the

coarse graining operator (non-ambiguous).
Prolongation operator : Γ?

ω : RN → RNfg refines σω into σ (ambiguous).
Scaling of errors

Background error covariance matrix: Bω = ΓωBΓT
ω ,

Observations/representativeness/model errors: Rω, to be discussed later.

Γ
ω

Γω

★

ω

Bocquet et al., 2011
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Reduction methods

Up and down the scale ladder (2/4)

ω

σω

N σσ  ∼
★(    ,P  )

N (    ,B)σ
b

★

Γ
ω

★

σ  ∼

ωωΓ
★

Bayesian choice of a prolongation operator

Idea: Use prior σ ∼ N (σb,B) to refine the source. Knowing σω in representation
ω, then from Bayes’ rule, the most likely refined source is given by the mode of

q(σ|σω) = q(σ)
qω(σω)δ (σω − Γωσ) , (3)

Bocquet et al., 2011
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Reduction methods

Up and down the scale ladder (3/4)

Bayesian choice of a prolongation operator

Refinement is now a statistical process! But the prolongation operator will be
defined as the most likely refinement operation.
Thus the (estimate of the) refined source is

σ? = σb + BΓT
ω

(
ΓωBΓT

ω

)−1 (σω − Γωσb) , (4)

which suggests the (affine) prolongation operator

Γ?
ω ≡ (INfg −Πω)σb + Λ?

ω , (5)

where the linear part of Γ?
ω is

Λ?
ω ≡ BΓT

ω

(
ΓωBΓT

ω

)−1
, and Πω ≡ Λ?

ωΓω . (6)

Bocquet et al., 2011
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Reduction methods

Up and down the scale ladder (4/4)

Up and down

Must consistently satisfy ΓωΓ?
ω = IN .

Down and up: Γ?
ωΓω = (INfg −Πω)σb + Πω

Properties of Πω

Πω is a projector since Π2
ω = Πω.

It is also B−1-symmetric: ΠωB = BΠT
ω .

Observation equation in representation ω
Then H becomes Hω = HΓ?

ω, and

µ = Hωσω + εω = HΓ?
ωΓωσ + εω , (7)

so that
µ = Hσb + HΠω(σ − σb) + εω . (8)

Bocquet et al., 2011
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Reduction methods

Accounting for aggregation/representation errors

Consistent observation equations:

µ = Hσ + ε = Hωσω + εω . (9)

Assuming aggregation is the only source of scale-dependent errors, one has
Hσ + ε = Hσb + HΠω(σ − σb) + εω, leading to the identification

εω = ε+ H
(
INfg −Πω

)
(σ − σb) . (10)

Assuming independence of the error and source priors, the computation of the
covariance matrix of these errors leads to

Rω = R + H
(
INfg −Πω

)
B
(
INfg −Πω

)
HT (11)

= R + H
(
INfg −Πω

)
BHT . (12)

In that case, one checks that the innovation statistics are scale-independent.

Rodgers, 2000; Bocquet et al., 2011
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Reduction methods

The DFS criterion for the optimality of representations

Idea: maximise the number of degrees of freedom in the signal (DFS), that come
from the observations and is transferred to control space:

J = Tr
(
IN − PaB−1) = Tr (HK)

= Tr
(

HBHT (R + HBHT)−1
)
. (13)

It also maximises the potential of BLUE.
Bounded by the number of available observations: 0 ≤ J ≤ d .
For a perfect observation/perfect model experiment: maxω J = d .
Limited by the errors diagnosed in the observations maxω J ≤ d .
It also reads, for any representation ω:

Jω = Tr
(

HωBωHT
ω

(
Rω + HωBωHT

ω

)−1
)
. (14)

Bocquet, 2009; Bocquet et al., 2011
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Reduction methods

Accounting for full scale-dependent errors

IDecomposition of errors from the scale analysis point of view:
the scale-independent observation error εo,
an aggregation error: εω ≡ ε+ εcω, where εc

ω = H
(
INfg −Πω

)
(σ − σb),

the model error that would be scale-dependent εm
ω .

As a result:
εω = εo + εcω + εmω . (15)

The criterion for the design of representations may then be non-monotonic.

ICriteria under scale-covariant errors (i.e. without model error except
representation errors)

Jω = Tr
(

ΠωHBHT (R + HBHT)−1)
. (16)

Bocquet et al., 2011
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Reduction methods

Criteria under scale-covariant errors

IWhen considering scale-covariant errors, the dependence of the criteria in the
representation ω can be simplified

Fisher:
Jω = Tr

(
ΠωBHTR−1H

)
. (17)

DFS:
Jω = Tr

(
ΠωHBHT (R + HBHT)−1)

. (18)

Data-dependent:

Jω =Tr
(
ΠωBHT(R + HBHT)−1(µ− µb)

×(µ− µb)T(R + HBHT)−1H
)
.

(19)

IThese objective functions can be proven to be increasing functions of the
number of grid cells!

Bocquet et al., 2011
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Reduction methods

CTBTO IMS radionuclide network

IObjective: 80 radionuclide particle
filters worldwide. 79 stations with
designated location (treaty).

IDesign network study
Performance of the net-
work assessed with de-
tectability criteria.

Koohkan et al., 2012; Ringbom & Milley, 2009
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Reduction methods

Optimal adaptive grid for the IMS radionuclide network (1/3)

I Large error case. Equivalent to dfs/number of observations −→ 0. N = 4096.

Koohkan et al., 2012
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Reduction methods

Optimal adaptive grid for the IMS radionuclide network (2/3)

IRealistic case (optimistic): dfs/number of observations ' 10%. N = 4096.

Koohkan et al., 2012
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Reduction methods

Optimal adaptive grid for the IMS radionuclide network (3/3)

ISmall error case: dfs/number of observations ' 90%. N = 4096.
Performance of distant future modelling and data assimilation systems.

Koohkan et al., 2012
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Reduction methods

Comparison of the asymptotic and exact designs performances
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Bocquet & Wu, 2011
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Reduction methods

More general reduction techniques

I Instead of defining optimal adaptive control space grids, one can look for general
low-rank representation and analyses within a truncated basis of the dominant modes.

I I invite you to read the recent and complete review on the topic by N. Bousserez and
D. Henze, with further applications to greenhouse gas inverse problems.

Methane fluxes posterior variance Reduced opt. grid for regional CO2 inversion.

Bocquet & Wu, 2011; Spantini et al., 2015; Bousserez & Henze, 2018
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An overlooked problem for sparse data

Inverse problem in atmospheric chemistry with sparse networks

I Inverse modelling of emissions of trace gas (greenhouse gases, VOCs, gaseous
reactive species, particulate matter, radionuclides, etc.)

ISparse surface-based network remains key for the inversion of emissions/fluxes/source.

ICan be solved with traditional techniques of data assimilation/inverse problems
assuming a fixed discretisation resolution of the model and of the emission prior and
statistics.
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An overlooked problem for sparse data

The colocation issue

IOdd dependence of the solution on the resolution (colocation).
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Issartel, 2003; Bocquet, 2005; Saide et al., 2011
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An overlooked problem for sparse data

Singular continuous limit of a DA system

IAssimilation of one concentration observation µ to retrieve an emission field σ

J (σ) = 1
r 2

(
µ−

∫
dx h(x)σ(x)

)2

+ 1
m2

∫
dx σ2(x)

h is the forward model adjoint solution attached to µ. Thikonov regularisation.

IThe solution is:
σ(x) = m2h(x)

r 2 + m2
∫

dx h2(x)
µ

IThe physical model must have a proper continuum limit.
In particular

∫
dx h(x)σ(x) and

∫
dx h(x) are proper.

IHowever, the data assimilation system does not necessarily have one!
In particular

∫
dx h2(x) is not necessarily proper. Its Riemann discretisation might

diverge as ∆x −→ 0. In that case, when ∆x −→ 0, one has:
σ(x) −→ 0, except maybe at the stations,

dfs ∝
[

1 + r2

m2

(∫
dx h2(x)

)−1
]−1
−→ 1.

Bocquet, 2005
M. Bocquet ECMWF Annual Seminar 2018, ECMWF, Reading, UK, 10-12 September 2018 27 / 40



An overlooked problem for sparse data

Singular continuous limit of a DA system

IThe divergence depends on many critical factors:
the geometry of control space (where the background statistics are defined),
the geometry of the observation space,
the nature of the physics (advection, diffusion, convection, etc.) and the geometry
of the physical space.

IExample of a diffusion problem µ = Hσ:

σ? = BHTG−1µ with G = HBHT .

The information matrix G is the Grammian of the adjoint solutions. A diagonal entry of
G has the form

g ∼
∑

k

vk [c∗i ]k [c∗i ]k (20)

We assume c∗i has a diffusive behaviour close to the observation network:

c∗(r, z, t) =
exp
{
− 1

t

(
|r|2
4Kh

+ |z|2
4Kz

)}
√

(4πt)D K d
h K D−d

z

. (21)

Bocquet, 2005
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An overlooked problem for sparse data

Singular continuous limit of a DA system

IGeometry:
D: the dimension of the physical space in which diffusion takes place,
d : the dimension of control (source) space,
δ: the dimension of the observation embedding space.

IAsymptotically (taking first the limits ∆t and ∆z go to 0)

g ∼ (D − 2)! Sd

2πD
1

Kh

(Kh

Kz

)D−d ∆d−2D+2
x

2D − d − 2 , (22)

where Sd = 2πd/2/Γ(d/2) is the area of the unit sphere in dimension d .

ITwo regimes:
If d − 2D + 2 > 0, g diverges when ∆x goes to 0. Then there is degeneracy.
If d − 2D + 2 ≤ 0, g converges. No degeneracy. Higher resolution is not
detrimental to the inverse problem.

Bocquet, 2005
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An overlooked problem for sparse data

Singular continuous limit of a DA system
D d δ divergence ‖σ?‖2

B−1/‖σ‖2
B−1 context

3 2 2 g ∼ 1
2π2Kz

∆−2
x ‖µ‖2∆2

x surface obs. and source

2 2 2 g ∼ − 1
πKh

ln ∆x − ‖µ‖
2

ln ∆x
surface obs., source and transport

3 3 3 g ∼ 2
π2Kh

∆−1
x ‖µ‖2∆x air obs., vol. source

3 2 3 no singularity constant air obs., surface source
3 0 2 no singularity constant surface obs., pointwise source

IKey findings :
For a 3D dispersion (diffusive-like close to the stations), ‖σ?‖2

B−1/‖σ‖2
B−1 behaves

like ∆4−d
x . Always singular DA system.

Radiance height-resolved products and lidar observations used for inversion of
emission on the ground does lead to the proper data assimilation system. No
fundamental constraint on the spatial resolution.

IWhat is wrong with our setting of the inverse problem?
White noise has improper power spectrum; Tikhonov regularisation is unphysical!
But is coloured noise appropriate? Is there an intrinsic correlation length?

Bocquet, 2005
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An overlooked problem for sparse data

The INFLUX inverse problem

I INFLUX experiments in Indianapolis: inverse estimation of CO2, CH4 and CO urban
fluxes using 12 towers, 5 NOA flasks samplers, 3 eddy flux towers, 1 Doppler lidar.

Lauvaux et al., 2016
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An overlooked problem for sparse data

The INFLUX inverse problem

IError reduction in CO2 emissions for a correlation length in B of 8, 5 and 2 kms.

Wu et al., 2018
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Sparse observations and the ensemble Kalman filter

Required EnKF ensemble size with sparse observations

IRMSE of EnKF runs with sparser and sparser observations (without localisation,
inflation optimally tuned)

Lorenz-96 Kuramoto-Sivashinsky
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ICatastrophic divergence of the EnKF with a sparse network.

Bocquet et al., 2018
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Sparse observations and the ensemble Kalman filter

Required EnKF ensemble size with sparse observations

IRMSE of EnKF runs with sparser and sparser observations (without localisation,
inflation optimally tuned) but with adjusted variance so as provide the same amount of
information.

Lorenz-96
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Sparse observations and the ensemble Kalman filter

Catastrophic divergence

IMechanism proposed by Gottwald and Majda (probably known by e.g., Anderson):
Analysis at n for assimilating one observation ym at site m:

xa
n = xb

n + Pnm (r + Pmm)−1 (ym − xb
n
)
. (23)

Pmm fluctuates around the local variance as ∼ 1/N.
Pnm is of the order of ∼ 1/N whereas it should exponentially vanish with d(n,m).
As a consequence: spurious correlations yielding spurious update.
Phenomenon amplified by a smaller r .

IObviously localisation should be a remedy to catastrophic divergence

xa
n = xb

n + ρnmPnm (r + Pmm)−1 (ym − xb
n
)
. (24)

But imbalance may be exacerbated by the lack of observations.

IHybridisation of covariances is another option:

xa
n = xb

n + (αPnm + (1− α)Bnm) (r + αPmm + (1− α)Bmm)−1 (ym − xb
n
)
. (25)

Gottwald & Majda, 2013; Penny, 2014
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Conclusions

Conclusions

IOptimal reduction techniques: Adapt control space in order to capture most of the
system DFS and minimise the representation error (multiscale data assimilation).

ISparse data assimilation systems pose several mathematical challenges:
Sparse observations in a density-changing cycled DA system requires reliable,
adaptive, possibly flow-dependent, background error statics; possibly spatially
adaptive localisation, inflation and hybridisation for EnKF/hybrid/EDA.
Depending on the geometry, statistics and physics of the data assimilation system,
the continuous limit of the system might not exist!
Traditional regularisation is inefficient or questionable. Alternatives?
The EnKF used with sparse observations may lead to catastrophic divergence
(another resurgence of sampling errors); that could be cured by (adaptive)
localisation and/or hybridisation.
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