

Evolution of global observing systems

John Eyre

ECMWF Seminar; Sept 2018

www.metoffice.gov.uk

"... behind every weather, water and climate condition forecast, every disaster mitigated, and every prediction debated, are the observational data" (WMO RA-V, 15th Session, May 2010, General summary)

- WIGOS Rolling Review of Requirements
 - WMO Vision for global observing systems in 2025
 - WIGOS Vision 2040
- Comparison of Vision with space agency plans
- Sharing observations
- Conclusions

WIGOS = WMO Integrated Global Observing System

Evolution

or

Design ?

The WIGOS Rolling Review of Requirements (RRR) process

Global NWP **High-resolution NWP** Nowcasting Sub-seasonal to Longer-range Forecasting Aeronautical Meteorology Forecasting Atmospheric Composition Monitoring Atmospheric Composition Atmospheric Composition info \rightarrow services in urban and populated areas Ocean Applications (Met-Ocean Forecasts and Services) Agricultural Meteorology Hydrology Climate Monitoring (GCOS) - now including GFCS requirements **Climate Science** Space Weather

OSCAR (Observing Systems Capability Analysis and Review Tool) User requirements:

http://www.wmo-sat.info/oscar/requirements

Space-based capabilities:

http://www.wmo-sat.info/oscar/spacecapabilities

Surface-based observing (under development): https://oscar.wmo.int/OSCAR/index.html#/

Gap Analyses (Statements of Guidance, SoGs) http://www.wmo.int/pages/prog/www/OSY/GOS-RRR.html#SOG

Vision:

http://www.wmo.int/pages/prog/www/OSY/gos-vision.html

Implementation Plan:

http://www.wmo.int/pages/prog/www/OSY/gos-vision.html#egos-ip

WMO "Vision for global observing systems in 2025"

Vision for the GOS in 2025 "challenging but achievable"

- General themes and issues
 - Response to user needs
 - Integration
 - Expansion
 - Automation
 - Consistency and homogeneity
- Space-based component
- Surface-based component
- System-specific trends and issues

(7 pages)

- a high-level design

- Operational geostationary satellites
- Operational polar-orbiting sun-synchronous satellites
- Additional operational missions in appropriate orbits
- Operational pathfinders and technology demonstrators
- Polar and geo platforms/instruments for space weather

Met Office

Operational geostationary satellites

- at least 6 each with:
- Infra-red/visible multi-spectral imager
- Infra-red hyper-spectral sounder
- Lightning imager

Operational polar-orbiting sun-synchronous satellites

- in 3 orbital planes each with:
- Infra-red/visible multi-spectral imager
- Microwave sounder
- Infra-red hyper-spectral sounder

recommended baseline, with in-orbit redundancy

Met Office

Additional operational missions in appropriate orbits:

- Microwave imagers, at least 3
- Scatterometers, at least 2
- Radio occultation constellation, at least 8
- Altimeter constellation
- Infra-red dual-view imager sea surface temperature
- Advanced visible/NIR imagers ocean colour, vegetation
- Visible/infra-red imager constellation land-surface
- Precipitation radars
- Broad-band visible/IR radiometers + total solar radiation budget
- Atmospheric composition instruments, including UV LEO and GEO
- Synthetic aperture radar waves, floods, sea-ice, ...

Operational pathfinders and technology demonstrators:

- Doppler wind lidar
- Low-frequency microwave radiometer salinity, soil moisture
- Microwave imager/sounder on geos precipitation
- Advanced imagers on geos
- Imagers on satellites in high-inclination, elliptical orbits
- Gravimetric sensors water: lakes, rivers, ground

Polar and geo platforms/instruments for space weather

• for solar imagery, particle detection, electron density

Vision 2025 - surface-based component - a list of technologies

- Land upper-air
 - Upper-air synoptic and reference stations
 - Remote sensing upper-air profiling remote stations
 - Aircraft
 - Atmospheric composition stations
 - GNSS receiver stations
- Land surface
 - Surface synoptic and climate reference stations
 - Atmospheric composition stations
 - Lightning detection system stations
 - Application specific stations (road weather, airport/heliport weather stations, agromet stations, urban meteorology, etc.

- Land hydrology
 - Hydrological reference stations
 - National hydrological network stations
 - Ground water stations
- Land weather radar
 - Weather radar station

Met Office

- Ocean upper air
 - Automated Shipboard Aerological Platform (ASAP) ships
- Ocean surface
 - HF coastal radars
 - Synoptic sea stations (ocean, island, coastal and fixed platform)
 - Ships
 - Buoys moored and drifting
 - Ice buoys
 - Tide stations
- Ocean sub-surface
 - Profiling floats
 - Ice tethered platforms
 - Ships of opportunity

- R&D and Operational pathfinders examples
 - UAVs
 - Gondolas
 - GRUAN stations
 - Aircraft
 - Instrumented marine animals
 - Ocean gliders

- For each instrument type list of variables observed
- System specific trends and issues
 - "The surface-based GOS will provide: ..."
 - Radiosonde networks ...
 - Aircraft observing systems ...
 - Land-surface observations systems ...
 - Surface marine observations ...
 - Ocean sub-surface observing technology ...
 - Remote-Sensing observing systems ...
 - Lightning detection systems ...
 - Surface-based observations of atmospheric composition ...
 - ... Nowcasting and very short-range forecasting ...

"Vision 2025" Vision for global observing systems in 2025 (approved 2009)

Implementation Plan for the Evolution of Global Observing Systems: "EGOS-IP 2025" (approved 2013)

"Vision 2025" Vision for global observing systems in 2025 (approved 2009)

Implementation Plan for the Evolution of Global Observing Systems: "EGOS-IP 2025" (approved 2013)

"Vision for WIGOS in 2040" (to be approved 2019)

Vision 2040 - space-based component What's new? (1)

- Concepts
 - Backbone system, with specific orbit configuration and measurement approach
 - Backbone system, with open orbit configuration and flexibility to optimize the measurement approach
 - Operational pathfinders and technology demonstrators
 - Additional opportunities WMO Members + 3rd parties government, academic, commercial

- Geo ring including UV/VIS/NIR sounders
- LEO constellation including MW imagers, scatterometers, nighttime vis. imagers
- Other LEOs more detail, including:
 - MW imager for surface temperature
 - MW temperature sounding for upper stratosphere and mesosphere
 - Atmospheric composition more specific, including limb sounding
 - Precipitation and cloud radar
 - GNSS-R
 - Lidars: wind, aerosol, sea-ice thickness
 - Multi-angle, multi-polarisation imagery (aerosol and radiation)
 - Space weather much more detail

Vision 2040 - surface-based component What's new?

- Upper-air drone-based obs
- Near-surface land carbon obs above ground and soil
- Autonomous ocean surface vehicles
- Autonomous underwater vehicles
- Observations from platforms at submarine telecoms cables
- Cryosphere more detail
- Space weather more detail

Comparison of "Vision 2025" with space agencies' plans

Sources of information:

OSCAR/Space: http://www.wmo-sat.info/oscar/spacecapabilities

- programmes
- satellites
- instruments
- capability review assessment of instruments by type
- gap analysis by variable

WMO satellite status list:

http://www.wmo.int/pages/prog/sat/satellitestatus.php

Operational geostationary satellites

Objectives

- weather in motion nowcasting
- cloud cover and cloud height
- winds (from moving clouds)
- other cloud properties
- aerosols
- vegetation, snow, fire
- sea/land surface temperature

Operational geostationary satellites

Met Office

	2018	→ 2025
E.Pacific	GOES-14,-15,-16,-17	GOES-T,-U
W.Atlantic		
E.Atlantic	MSG: M-9,-10,-11	Electro-L N3 MTG-I1,-I2,-S1
Indian Ocean	Met-8 INSAT-3DR Kalpana-1 Electro-L N2 FY-2H INSAT-3D FY-2E,-2G FY-4A	MSG? INSAT-3DS Electro-L N5 FY-4B,-4C,-4D
W.Pacific	FY-2F1 COMS Himawari-8,-9	GEO-KOMSAT-2A,-2B Himawari-8,-9(?) Electro-L N4

Operational geostationary satellites in 2025 (1)

satellite series	Vis/IR imager	Hyperspectral IR sounder	Lighting imager
MSG	SEVIRI (12 ch)	no	no
MTG	FCI (16 ch)	IRS	LI
GOES-R	ABI (16 ch)	no	GLM
Himawari	AHI (16 ch)	no	no
FY-4	AGRI (14 ch)	GIIRS	LMI
INSAT-3DS	IMAGER (6 ch)	no (low-res SOUNDER)	no
GEO-KOMSAT-2	AMI (16 ch)	no	no
Electro-L	MSU-GS (10 ch)	no	no

Operational geostationary satellites in 2025 (2)

	Vis/IR imager	Hyperspectral IR sounder	Lighting imager
E.Pacific	YES	?	YES
W.Atlantic	YES	?	YES
E.Atlantic	YES	YES	YES
Indian Ocean	YES	YES	YES
W.Pacific	YES	?	?

Operational geostationary satellites in 2025 (3)

Issues:

- Coverage of IR sounding and LI
- Quality of AMVs
- IR sounder maturity / back up
- Others ??

hyperspectral IR sounding

Operational polar-orbiting sunsynchronous satellites

Met Office

	2018	→ 2025
Early morning (LECT ~1730)	DMSP F-17,-18 NOAA-15	(DMSP F20) FY-3E,-3H
	NOAA-18	
Morning (LECT ~0930)	Metop-A,-B FY-3C Meteor-M N2	Metop-C Metop-SG Meteor-M N2-2, N2-4 FY-3F
Afternoon (LECT ~1330)	NOAA-20, Suomi-NPP FY-3B, <mark>-3D</mark>	JPSS-2 FY-3G
(LECT ~1530)	NOAA-19 DMSP F-16	Meteor-M N2-3

Operational polar-orbiting sunsynchronous satellites in 2025 (1)

satellite series	Hyperspectral IR sounder	MW sounder	Vis/IR imager
Metop-SG-A	IASI-NG	MWS	METimage
Metop	IASI	AMSU-A, MHS	AVHRR
JPSS	CrIS	ATMS	VIIRS
FY-3	HIRAS	MWTS-3, MWHS-2	MERSI-2
FY-3RM	no	MWTS-3, MWHS-2	MERSI-2
Meteor-M N2	IKFS-2	MTVZA-GY	MSU-MR
Meteor-MP	IKFS-3	MTVZA-GY-MP	MSU-MR-MP
DMSP	no	SSMIS	OLS

Operational polar-orbiting sunsynchronous satellites in 2025 (2)

	Vis/IR imager	Hyperspectral IR sounder	MW sounder
Early morning	YES?	YES?	YES?
Morning	YES	YES	YES
Afternoon	YES	YES	YES

Operational polar-orbiting sunsynchronous satellites in 2025 (3)

Issues:

- Early morning orbit: FY-3E \rightarrow FY-3H?
- Continuity vulnerability to early failure
- Operational back-up preparations?
- Upper atmosphere sounding (UAS) channels, following SSMIS
- MW sounders NEdT marginal
- Others??

Microwave Imagery

Objectives

- cloud and precipitation
- total column water vapour
- sea-ice, snow, sea surface wind
- SST, soil moisture

Microwave imagers - 2018

Met Office

satellites	instrument	channels (GHz)
DMSP F15	SSM/I	19-85
DMSP F16,F17,F18, F19	SSMIS	19-183, incl.50-60
TRMM	ТМІ	10-85
Coriolis	Windsat	6.8-37
GCOM-W1	AMSR-2	6.9-89
FY-3B,-3C,-3D	MWRI	10-89
Megha-Tropiques	MADRAS	18-157
GPM Core	GMI	10-183
Meteor-M N2	MTVZA-GY	10-183, incl.50-60
HY-2A,-2B	MWI	6.6-37

© Crown copyright 2007

Microwave imagers - 2025

Met Office

satellite series	instrument	channels (GHz)	
DMSP	SSMIS	19-183, incl.50-60	
GCOM-W ?	AMSR-2	6.9-89	→ 2025 ?
GPM-Core ?	GMI	10-183	→2018+
HY-2	MWI	6.6-37	→ 2028
FY-3, FY-3RM	MWRI	10-89	→ 2028
Metop-SG-B	MWI	18-183, incl.50-54,118	2022→
Metop-SG-B	ICI	183-664	2022→
DWSS	MIS	6.3-183, incl.50-60	??
Meteor-M	MTVZA-GY	10-183, incl.50-60	→2028
Meteor-MP	MTVZA-GY-MP	6.9-183, incl.50-60	2021-2030

© Crown copyright 2007

Scatterometry

Objectives

- ocean surface wind speed and direction
- soil moisture
- snow equivalent water
- sea-ice type

ASCAT: 20090120 20:302 HIRLAM: 2009012015+6 lat lon: 61.72 5.23 IR: 20:30

Scatterometers - 2018

satellites	instrument	
Metop-A,-B	ASCAT	C-band
ScatSat-1	OSCAT	Ku-band
ISS RapidScat	RapidScat	Ku-band
HY-2A	SCAT	Ku-band

Scatterometers - 2025

satellite series	instrument		
Metop	ASCAT	C-band	→2024+?
Metop-SG-B	SCA	C-band	2022→
FY-3E,-3H	WindRad	C+Ku-band	2019-29
HY-2	SCAT	Ku-band	→ 2027+
Meteor-M N3	SCAT	Ku-band	2021-26
ScatSat-1	OSCAT	Ku-band	2016-21
CFOSAT, -FO?	SCAT	Ku-band	2018-27?
OceanSat-3,-3A	OSCAT	Ku-band	2019-24

Radio occultation

Objectives

- refractivity profiles at high vertical resolution
 - temperature / humidity profiles
- ionospheric electron content

Radio occultation - 2018

Total:

9 receivers

~1800 occultations per day

(Nov 2015)

satellites	instrument	
COSMIC	IGOR	~1 satellites
Metop-A and -B	GRAS	
GRACE-A or -B	Blackjack	
TerraSAR-X	IGOR	
Tandem-X	IGOR	
FY-3C	GNOS	
Oceansat-2	ROSA	
Megha-tropiques	ROSA	
KOMPSAT-5	AOPOD	

Radio occultation - 2025

	satellite series	instrument		
	COSMIC-2A	Tri-G	6 sats	2018-25?
WMO EGOS-	Metop-C	GRAS		→ 2026+?
IP says:	Metop-SG	RO	2 sats	2021-30+
" at least 10000 occultations	FY-3	GNOS		→ 2029+?
	Meteor-M N3	Radiomet		2020-25
per day"	Meteor-MP	ARMA-MP		2021-30
	JASON-CS	Tri-G	2 sats	2020-30+
	SEOSAR/Paz	ROHPP		2018-23
	GRACE-FO	Tri-G	2 sats	2018-23
© Crown copyright 2007	Commercial ?	?	?	?

Doppler wind lidar

Objectives

- wind profiles (line-of-sight)
- profiles of cloud and aerosol
- aerosol properties
- boundary layer height

satellites	instrument	
ADM-Aeolus	ALADIN	2018-21
3D-Winds	3D-Winds lidar	???

Low frequency microwave – ~1.4 GHz

Objectives

- soil moisture
- sea surface salinity
- sea surface wind (high wind speed)
- sea ice thickness (thin ice)

satellites	instrument	
SMOS	MIRAS	2009-18+
SAC-D	Aquarius	2011-15
SMAP	SMAP	2015-18+

Cloud and precipitation radar

satellites	instrument	frequency (GHz)	
TRMM	PR	13.8	1997-2015
Cloudsat	CPR	94	2006-18+
GPM-Core	DPR	13.6 + 35.6	2014-18+
EarthCARE	CPR	94	2021-24
FY-3RM-1, -2	Ku/Ka-PR	? 12-18 + 26-40 ?	2020-28

Imagers on satellites in high-inclination elliptical orbits

satellites	instrument		
Arctica-M N	MSU-GS/A	10 channels	2019-30
PCW-1, -2	ISR	21 channels	2022-29

Additional operational missions and operational pathfinders in 2025

SUMMARY

MW imagers	7+	needed for GPM concept
Scatterometers	4+	
RO	15+	EGOS-IP calls for >10,000 occs. per day
DWL	?	
Low-freq. MW	?	
Cloud+precip radar	1	FY-3RM/KuKaPR
Imagers in HEO	2?	Arctica

Other applications

- Focus here has been on operational NWP
- Most technologies covered are also important for other applications
- ... but other technologies also needed for:
 - Atmosphere: atmospheric composition
 - Ocean: SST, SSH, ice thickness, ocean colour
 - Land surface
 - Earth Radiation Budget
 - Space Weather
- Similar analysis needed for these applications

ocrossing Generally, more gaps for other applications

Sharing observations

Observing Network Design Principles for WIGOS

- 1. Serving many Application Areas
- 2. Meeting user requirements
- 3. Meeting national, regional and global requirements
- 4. Designing appropriately spaced networks
- 5. Designing cost-effective networks
- 6. Achieving homogeneity in observational data
- 7. Designing through a tiered approach
- 8. Designing reliable and stable networks
- 9. Making observational data available
- 10. Providing information so that the observations can be interpreted
- 11. Achieving sustainable networks
- 12. Managing change

© Crown copyright 2007

• Data availability!

- Keys gaps remains:
 - some for operational meteorology
 - more for climate monitoring and other applications
 - several vulnerabilities to early failure

• Role of NWP centres in helping space agencies

Conclusions

- Space agencies' plans provide a good response to the "WMO Vision for 2025"
 - ... with some gaps for operational meteorology
 - ... and more gaps for climate monitoring and other applications
- Surface observations remain crucial many important requirements for NWP and related applications cannot be met from space
- Continued efforts needed to make observational data available for our community

Met Office

Thank you! Questions?

www.metoffice.gov.uk 2017, Met Office

Nadir-viewing UV-SWIR spectrometry UVNS (Sentinel-5 on Metop-SG)

Heritage: GOME-2 (Metop)

Objectives

- ozone profile and column
- columns of SO₂, NO₂, H₂O, CO, CH₄
- aerosol optical depth
- columns of BrO, HCHO, OCHCHO
- column of CO₂

Implementation:

EU's GMES Sentinel-5

Multi-viewing multi-channel multi-polarisation imaging 3MI (on Metop-SG)

Heritage: POLDER (ADEOS)

Objectives

- aerosol optical thickness, particle size, type, height, absorption
- cloud phase, height, optical depth
- surface albedo, ocean colour

Radiant budget instrument CERES, RBI

Heritage: ERB

Objectives

 outgoing longwave and shortwave radiant energy at top of atmosphere

Implementation

- NOAA-20
- JPSS
- FY-3

© Crown copyright 2007

Total solar irradiance monitor TSIS, SIM, SIM-2

Heritage: SORCE

Objectives

 incoming solar radiation top of atmosphere

Implementation

- ISS
- CSIM
- FY-3

Altimetry ALT

Objectives

- ocean topography
 - ocean currents, sea level, ...
- sea state
- sea/land-ice topography

Implementation:

- Jason, Jason-CS
- Sentinel-3
- FY-2
- CFOSAT
- SWOT

Dual-view radiometry DVR

Objectives

- sea surface temperature (climate quality)
- land surface temperature
- vegetation index, cloud imagery, aerosols

Implementation:

- ERS-1 and -2: ATSR
- ENVISAT: AATSR
- Sentinel-3: SLSTR

Ocean colour imagery OCI

Objectives

- chlorophyll , yellow substance, water sediment, algal blooms
- vegetation index, cloud imagery, aerosols
- total column water vapour over land

Implementation:

- SeaWIFS, MERIS
- OLCI on Sentinel-3
- HY-2

- Vision
 - a realistic aspiration and target for 2025
 - endorsed by WMO/CBS in 2009
- Implementation Plan
 - ... for the Evolution of Global Observing Systems, EGOS-IP
 - responds to the Vision
 - provides guidance for Members and partner consortia
 - proposes roles for fulfilling the new Vision
 - sets out "road-map" for achieving it
 - ~120 pages, 115 Actions
 - endorsed by WMO/CBS in 2012

© Crown copyright 2007

Vision for WIGOS in 2040: plan for drafting, review and approval

- 2014-16
- Nov 2015
- 2016-17

- Oct 2016
- Nov 2016
- 2017
- Jan 2018
- Early 2018
- 2018-19
- June 2018
- 2018
- 2019

Draft Vision 2040 Space developed Vision 2040 Space Workshop, Geneva Draft Vision 2040 Surface developed - input from new GCOS-IP noted - to be done for space-based component Vision 2040 Surface Workshop, Geneva Draft Visions (surface and space) \rightarrow CBS Combined surface/space Vision drafted Progress reviewed by ICG-WIGOS-7 Combined surface/space Vision consolidated Consultation – all stakeholders Endorsed by WMO/EC-70 Endorsed by CBS-Ext Approved by WMO Congress-18

Expectation

- 2019 WMO Congress-18 approves Vision for WIGOS
- 2019 WMO Congress-18 requests development of WIGOS-IP
- 2023 WMO Congress-19 approves WIGOS-IP

WIGOS-IP – main inputs:

- Vision for WIGOS in 2040
- EGOS-IP / 2025
- IPs of partners: GCOS-IP, GCW-IP, etc.

- Preamble
- Section 1. General trends and issues
- Section 2. The surface-based component a table listing:
 - instrument/observations types,
 - the geophysical variables that they measure,
 - their expected trends and evolution
- Section 3. Application-specific and other issues

Vision 2040 - surface-based component

Met Office

Preamble

- High level goals to guide evolution of WIGOS
- Link to WMO Strategic Plan
- Using existing, new and emerging technologies
- Leading to better data, products and services from NHMSs
- WMO, working with partners
- Major changes \rightarrow science, IT, products, training, ...
- Rapid changes in implementation agents ...
- ... but principles of sharing observations remain
- Supersedes Vision 2025 reflects broader scope of WIGOS; updates on observing technologies and their development
- To be combined with Vision 2040 Space

Section 1. General trends and issues

- Response to user needs
- Integration
- Expansion
- Automation and technology trends
- Consistency, **continuity** and homogeneity

Vision 2040 - surface-based component

Section 2. The surface-based component - Table

Instrument / observation type	Geophysical variables and phenomena	Evolution and trends

Vision 2040 - surface-based component

Section 2. The surface-based component (1)

- Upper-air observations •
 - Upper-air weather and climate observations •
 - Aircraft-based observations
 - Remote sensing upper-air observations ٠
 - Atmospheric composition upper-air observations ٠
 - **GNSS** receiver observations
 - Lightning detection systems ٠
 - Weather radars •
 - Automated Shipboard Aerological Platform (ASAP) observations ٠
 - **Drone-based observations**

Section 2. The surface-based component (2)

- Near-surface observations over land
 - Surface weather and climate observations
 - Atmospheric composition surface observations
 - Applications-specific observations (road weather, airport/heliport weather stations, agromet stations, urban meteorology, etc.)
 - Carbon observations: above ground and soil
- Near-surface observations over rivers and lakes
 - Hydrological observing stations
 - Ground water observations

Section 2. The surface-based component (3)

- Near-surface observations over ocean
 - Ground-based observing stations at sea (ocean, island, coastal and fixed platform/station locations)
 - Ship observations
 - Buoy observations moored and drifting
 - Sea-level observations
 - Autonomous ocean surface vehicles

Section 2. The surface-based component (4)

- Ocean underwater observations
 - Profiling floats
 - Autonomous underwater vehicles (e.g. gliders)
 - Sub-surface observations from drifting and moored buoys
 - Ships of opportunity
 - Observations from platforms at submarine telecommunication cables
 - Ice-tethered platform observations

Section 2. The surface-based component (5)

- Cryospheric observations over sea-ice
 - Ice buoy observations
 - ...
- Cryospheric observations over ice sheets and glaciers
 - Ice buoys observations
 - ...
- Other cryospheric observations
 - Permafrost observations

• ...

Section 2. The surface-based component (6)

- Space weather observations
 - Solar optical observations
 - Solar radio observations
 - Ionospheric observations ionosonde
 - Ionospheric observations riometer
 - Ionospheric observations GNSS
 - Geomagnetic observations
 - Cosmic ray observations

Section 2. The surface-based component (7)

- R&D and operational pathfinders examples
 - Unmanned aeronautical vehicles (UAVs)
 - Aircraft-based observing systems and airborne platforms
 - Observations from gondolas
 - [Chemistry] ?
 - ... Ionospheric observations GNSS
 - More ?

Section 3. Application-specific and other issues

- Retaining expertise on instrument specification and design
- Open access to observational data pre-processing info
- RFI issues
- ...
- Application-specific key points
 - NWP
 - Nowcasting
 - Climate monitoring
 - ...
 - [potentially all Application Areas within RRR]

© Crown copyright 2007