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Outline

• Motivation: The need for Earth System Data Assimilation

• Methods:

– DA Methods used for NWP, including hybrid methods

– DA Methods for other geophysical components: e.g. Sea ice

– Methods for coupled DA

• Examples:

– First attempts at coupled Atmosphere-Ice-Ocean DA at ECCC

• Strategy for Earth System DA at ECCC

– Use of highly modular common DA software for all components

– Explore scale-dependent combined with system-dependent 
ensemble covariance localization
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Motivation: Earth System Prediction

• Operational forecast models increasingly coupled (2016 
Annual Seminar; ECCC global forecasts coupled with Ice-
Ocean since November, 2017)

• Benefits from coupled forecasts even at shorter time-
scales relevant for medium-range NWP, related to:

– Tropical convection,

– Hurricanes, extra-tropical storms

– Coastal upwelling,

– Sea ice (polynyas, leads)

• Additional benefits from providing operational ice-ocean 
forecasts and services – may require new collaborations 
(e.g. Canadian Ice Service)

• Initialization of these models from independent 
assimilation systems for each component a challenge
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The Need for Coupled Atmosphere-

Ice-Ocean Prediction

• Improved weather prediction 
– Timescales from days to seasons, due to…

– Sea ice, tropical cyclones, surface interactions

• Sea ice prediction  
– Improved automated analyses and forecasts for 

the Canadian Ice Service – to complement 
manual ice chart analyses

– Identify/predict high pressure areas dangerous 
for ships

• Emergency response  
– Comprehensive trajectory modelling capacity

– E.g. dispersion of pollutants

ECCC requires ice-ocean forecasts and 
information services for:

Davidson et al., SCOR, 2013



Page 6 – September 11, 2018

Global Deterministic Prediction System 

(GDPS)

Global, ∆x =25km

• GEM atmospheric model 
– ECCC's model for global and regional operational forecasts

– Coupled GDPS 10 day forecasts: atmosphere-ocean-ice (coupled in 
operations since November 2017)

• 4D-EnVar data assimilation
– Variational approach using 4D ensemble covariances from EnKF

– Hybrid covariances by averaging the ensemble covariances with the 
static NMC-method covariances

• Data assimilated by the GDPS:
– Radiosondes, Aircraft

– Surface report (Land, Ship, Buoys)

– AMSU-A/MHS/ATMS/SSMIS

– AIRS/IASI/CrIS/Geo-Radiances

– ASCAT

– AMVs

– GPS-RO, ground-based GPS
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Ice-Ocean Modelling and

Data Assimilation with  

1/4° (ORCAS025)• Global Ice-Ocean Prediction System (GIOPS), NEMO-CICE 
coupled model

– Used also for Seasonal forecasting

• Produces daily ice-ocean analyses and 10 day forecasts

• Mercator Ocean Assimilation System (SAM2):
– Sea surface temperature assimilated daily 

– Temperature and salinity profiles weekly

– Sea level anomaly from satellite altimeters weekly

• 3DVar Ice analysis (6-hourly):
– SSM/I, SSM/IS, ASCAT, AVHRR

– CIS charts and image analyses

• SST OI analysis (daily):
– in situ data, AVHRR, AMSR-E, ATSR

– foundation SST

– background: previous day analysis

CICE

https://wiki.cmc.ec.gc.ca/images/a/ae/Grille_orca025_sph.gif
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Coupled Forecasts for Typhoon Neoguri

96h forecasts, valid 00Z, July 10, 2014

a) Forced (uncoupled) SST b) Coupled SSTSST from drifter 

obs. 

Much better 

agreement of cold 

wake in Coupled 

forecasts

Smith et al., 2018, MWR
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Coupled Operational Global Forecasts

• Coupled model:

– Atm: GEM 25km

– Ocean: NEMO-ORCA025 (1/4°)

– Ice: CICE4

– Uncoupled DA

• Evaluation:

– 10 day forecasts 15 Jun–31 Aug, 

2014

– Significant forecast 

improvements over most areas

– Shown: 850hPa geopotential 

height versus ERA-Interim

coupled

uncoupled

Smaller standard 

deviation

Asia

10% reduction at 120hr

Smith et al., 2018, MWR
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The Need for Earth System DA: Example

• Schematic of ECCC coupled global forecast initialization:

Coupled Model:

Atm

Land Sfc

Sea Ice

Ocean

SST analysis

Daily OI

Sea Ice analysis

6-hourly 3D-Var

Atm analysis

6-hourly 4D-EnVar

Land Sfc analysis

6-hourly OI

Daily ocean analysis

Weekly ocean analysis

Adjustments 
to enforce 
physical 
consistency
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The Need for Earth System DA: Example

• In principle, coupled DA would be simpler (in practice ?)

Coupled Model:

Atm

Land Sfc

Sea Ice

Ocean

Coupled DA:

6-hourly 4D-EnVar

Atm

Land Sfc

Sea Ice

Ocean (incl. SST)
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The Need for Coupled Earth System DA

• Several challenges in initializing coupled models could be handled 
more directly with coupled assimilation methods

• Better treatment of physical consistency between component systems:

– Analysis updates to sea-ice and ocean temperature, consistency 
essential for even short-term sea ice forecasts

– Background errors of near-surface atmosphere can be highly 
correlated with ocean/land surface errors

• Accounting for background error correlations between component 
systems allows observations of one component to correct another

• Consistent assimilation of "coupled" observations:

– Many surface-sensitive satellite observations used for extracting 
sea ice and ocean information also sensitive to atmosphere (e.g. 
estimating sea ice concentration with an RTM, Scott et al. 2012)

– Location of sea-ice edge affects selection/usage of surface-
sensitive atmospheric and ocean observations
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Example: Atm-Ocean, Atm-Land Coupling

• Background error correlation of near-surface air temperature and 
surface skin temperature:

• Computed over July 2018 
from 48h-24h coupled 
forecasts (NMC method)

• High positive correlations 
over land during daytime 
(many land surface DA 
systems use atm obs)

• Over ocean: small scale 
variability, generally 
positive over north Pacific 
and Atlantic

00 UTC

12 UTC
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• For NWP, DA systems based on either:

– Variational data assimilation (3D-Var, 4D-Var, 4D-Var with hybrid 
cov., 4D-EnVar, etc.); or

– Ensemble Kalman Filter (perturbed obs EnKF, EnSRF, LETKF, 
ensemble of Var's etc.)

• Variational approaches typically used for deterministic 
prediction, EnKF for ensemble prediction

• For other geophysical DA systems, more variety of 
methods still used: 

– Optimal Interpolation (OI)

– Diffusion operator for spatial error correlations of ice and ocean

– Static SEEK filter (SAM2 ocean DA)

– Some use persistence of previous analysis as background state 
(e.g. SST and sea ice analysis systems at ECCC)

DA Methods
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Hybrid Methods for NWP DA

• Many flavours of "hybrid" DA approaches:

– Variational analysis used to recenter the EnKF ensemble (see 
next few slides)

– EnKF ensemble used to partially specify background-error 
covariances in variational systems (especially 4D-EnVar)

• These hybrid systems combine the strengths of both 
approaches:

– Variational approaches efficient for producing a single analysis 
(deterministic, ensemble mean) by assimilating large number of 
observations and flexible treatment of error covariances

– EnKF efficient for producing a large ensemble of analyses by 
assimilating moderately large number of observations, but 
treatment of error covariances typically more restricted

– Dual-resolution incremental approach: analysis increment (and 
ensemble covariances) at lower resolution than deterministic 
model
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Hybrid DA: Operational NWP at ECCC

x 20

x 20Global

Regional

Convective-

scale
(experimental)

Deterministic Ensemble

EnKF

256-

member

4DEnVar

4DEnVar

GDPS

RDPS

HRDPS

GEPS

REPS

x=10km

x=2.5km

x=39km

x=15km

xa=39km

xa=39km

xa=39km

x 20

x 20

x=25km

Soon to implement a regional EnKF

for initializing regional ensemble 

forecasts and providing ensemble 

covariances to regional 4D-EnVar
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GEMGEMGEMGEMGEM

• A simple approach for incorporating more observations in the 
EnKF with little added cost by using 4D-EnVar to update the 
ensemble mean and the EnKF to update the perturbations:

𝐱𝑘
𝑎 = 𝐱𝑘

𝑏 + ∆ത𝐱𝑎envar+ ∆𝐱𝑘
𝑎′

enkf

Hybrid DA: 4D-EnVar for Ensemble Mean
Buehner et al., 2017, MWR

EnKF

EnVar

GEMGEMGEMGEMGEM

Compute 

mean

Recenter

ensemble

Full set 

of GDPS 

obs

Subset 

of GDPS 

obs

• 4D-EnVar has nearly identical 
configuration as deterministic 
system

• Some centers instead 
recenter ensemble on 
deterministic analysis

• 4D-EnVar uses direct 
spatial localization of B
matrix instead of BHT or 
indirectly through R



Page 19 – September 11, 2018

Hybrid DA: 4D-EnVar for Ensemble Mean
Control member forecasts (deterministic forecast from mean analysis)

72h global forecasts

Using EnVar with all GDPS obs to only update the ensemble mean gives 

significant improvements for control member vs. Current EnKF
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Hybrid Methods for Earth System DA

• Need to consider cost and complexity of expanding such 
DA systems to directly include other Earth system 
components:

– 4D-Var requires coding and maintaining TLM/AD versions of each 
component model, linearization for some geophysical models 
challenging due to nonlinearities (e.g. sea ice rheology)

– EnKF requires large ensemble size (~100 members) to estimate 
error covariances  lower resolution than deterministic model, 
not straightforward for ocean/sea-ice (e.g. Arctic archipelago)

– Additional effort and expertise required to maintain separate DA 
algorithms and software for each system component
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Example: ECCC Regional/Global Ice 

Concentration Analyses (Buehner et al. 2016)

• Regional: ~5 km ; Global: ~10 km resolution

• 4 analyses per day

• background = analysis 6 hours earlier

• total ice concentration (3DVar) and error 
stddev estimate (simple Kalman filter)

• observations assimilated:

– CIS ice charts, lake bulletins

– SSM/I, SSM/IS, AMSR2

– ASCAT

– AVHRR (ice/water)

• background error correlations modelled with 
diffusion operator

• ice is removed where SST > 4°C

• ice field is “corrected” where estimated 
analysis-error stddev is high

1768 × 1618 grid points
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Ice Analysis: Passive Microwave Data
SSMI, SSMIS, AMSR2

• Assimilation:

• Total ice concentration estimated from NASA Team 2 retrieval 
algorithm

• Use "footprint" observation operator that aggregates gridded ice 
concentration over footprint of instrument

• Quality control - reject data when:

• Surface Air Temperature > 0°C (melt ponds)

• Retrieved ice concentration is not zero AND

• Sea Surface Temperature (SST) is above 4°C  OR

• Historical Frequency of Occurrence of ice is 0  OR

• Wind speed > 25 knots (Wind filter)
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Ice Analysis: Observation Footprints

5 km

analysis

grid box

SSM/I

55 km

ASCAT

50 km

SSM/IS

58 km

AMSR2

22 km

5.5 km

AVHRR

5 km

ice charts

• Footprint observation operator important for combining 
information from sensors with such different resolutions

• Observation rejected if footprint touches land, removing 
most low resolution obs near coast and in narrow channels



Page 25 – September 11, 2018

Ice Analysis: Impact of Quality Control
Example: July 8, 2007

Without QC With QC

Necessary due to use of simple ice retrieval algorithm that 

does not model effect of surface melt ponds
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With wind filterWithout wind filter

Ice Analysis: Effect of Wind Filter

Necessary due to use of simple ice retrieval algorithm that 

does not model effect of wind on ocean emissivity
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Ice Concentration

Analysis

Analysis-Error

Standard Deviation

Corrected Corrected – Original

Correction where

sa >= 0.6
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• Cape Farewell, 21 June 2013

• High resolution needed near 
coastlines, in narrow channels

• Limited coverage due to cloud 
cover, lack of daylight in 
winter

Without AVHRR With AVHRR

Assimilation of AVHRR 

Ice/Water Observations

DMI Ice Chart
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SAR Ice/Water Compared with IMS Product
Progress developing a SAR ice/water retrieval algorithm

One of the worst cases: 

Labrador Sea, May 3, 

2013

Retrievals every  5km

Ice agrees with IMS

Water agrees with IMS

Water disagrees with IMS

Ice disagrees with IMS

Ice is highly dynamic 

Many disagreements 

likely due to low temporal 

resolution of IMS and 

difficulty identifying edge

No retrieval produced in 

areas with high uncertainty
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Cycling Strategies for Earth System DA

• Uncoupled DA:

Atm model

Sea Ice DA

Atm DA

Land Sfc DA

Ocean DA

Land Sfc model

Sea Ice model

Ocean model

Sea Ice DA

Atm DA

Land Sfc DA

Ocean DA

• In reality, not possible to be fully uncoupled:

– Models: land sfc, sea ice, ocean need atm forcing, and vice versa

– DA: e.g. atmosphere needs SST and sea ice information

– Some sort of ad hoc coupling needed both for models and DA, but 
insufficient to ensure physical consistency between components
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Cycling Strategies for Earth System DA

• Weakly coupled DA:

Sea Ice DA

Atm DA

Land Sfc DA

Ocean DA

Sea Ice DA

Atm DA

Land Sfc DA

Ocean DA

• Physical consistency generated during coupled short-term forecast

• DA may degrade consistency near the component interfaces and not 
make optimal use of observations affected by multiple components; 
also difficult to include interactions between analysis systems

Coupled Model:

Atm

Land Sfc

Sea Ice

Ocean
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Cycling Strategies for Earth System DA

• Strongly coupled DA:

• DA for all components within the same system allows for coupling 
between the background errors and within the observation operators

• Requires unified procedures: Same DA algorithm, same DA 
frequency, and likely within same piece of software

• Other possibilities: coupling through 4D-Var outer loop (ECMWF)

Coupled DA:

Atm

Land Sfc

Sea Ice

Ocean

Coupled Model:

Atm

Land Sfc

Sea Ice

Ocean

Coupled DA:

Atm

Land Sfc

Sea Ice

Ocean
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Current Operational Uncoupled DA

EnVarAtmos GEM

SAM2

(daily)
Ocean NEMO + CICE

Ice 

3DVar

EnVar GEM EnVar GEM EnVar GEM

00 UTC 06 UTC 12 UTC 18 UTC

SST                   Ice

18 UTC

Ice 

3DVar
Ice 

3DVar

Ice 

3DVar

assimilation cycle for day j

SST OI
using data 
of day (j-2)

Ice 

3DVar

Models see the same SST and Ice analyses, but otherwise independent, 

do not evolve in GEM; SAM2 assimilates SST analysis (no diurnal cycle)
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First Weakly Coupled Atm-Ice-Ocean DA
Work of Sergey Skachko

EnVarAtmos GEM

SAM2

(daily)
Ocean NEMO

+ CICE

EnVar GEM EnVar GEM EnVar GEM

SST

NEMO

+ CICE

NEMO

+ CICE

NEMO

+ CICE

00 UTC 06 UTC 12 UTC 18 UTC

SST                   Ice                  Atm,Oce,Ice

18 UTC

SST OI
using data of 

day (j-1)

Independent ocean and atmosphere DA; common coupled background 
state for atmospheric EnVar and oceanic SAM2 DA. 

Ice 

3DVar

Ice 

3DVar

Ice 

3DVar

SST and Ice DA cycles 

still use previous analysis 

as the background stateIce 

3DVar
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Forecasts from Weakly Coupled DA
Work of Sergey Skachko

Difference of atmospheric temperature StdDev with respect to own 

analyses as a function of lead time. Region: Northern Extratropics

Coupled forecasts from uncoupled

analyses vs. uncoupled forecasts.

Coupled forecasts from weakly 

coupled analyses vs. uncoupled 

forecasts.

Coupled forecasts less consistent with 

own analyses for near-sfc temperature 

due to use of uncoupled ocean analyses

Analyses where 4D-EnVar sees the 

model SST are more consistent with the 

coupled model forecasts
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Forecasts from Weakly Coupled DA
Work of Sergey Skachko

Atmospheric 1000hPa temperature StdDev and bias with respect to 

mean analyses as a function of forecast lead time.

Coupled forecasts from 

Weakly coupled analyses vs. Uncoupled analyses.

Weakly coupled DA produces no significant change in coupled 

forecast temperature Bias (dashed) or StdDev (solid)

Northern extra-tropics Tropics Southern extra-tropics

0    12   24   36   48   72   96  120      0    12   24   36   48   72   96  120       0    12   24   36   48   72   96  120
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Impact of Coupling on SST Errors

Coupled oceanic analysis

Uncoupled oceanic analysis

• Generally better agreement from weak coupling with the foundation SST 
computed using SST OI data assimilation system

• Validation against raw SST data is under development

Puerto Rico XBT Cape Verde XBTFlorida Straits XBT

Bias

RMS

Obs-Background Bias and RMS with respect to SST 

OI analysis
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– DA Methods used for NWP, including hybrid methods

– DA Methods for other geophysical components

– Methods for coupled DA
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– Use of highly modular common DA software for all components

– Explore scale-dependent combined with system-dependent 
ensemble covariance localization
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Strategy: Towards Strongly Coupled DA

• Starting with the deterministic prediction system, migrate 
all DA systems into a common modular software (MIDAS):

– Sea Ice 3D-Var

– SST Optimal Interpolation – implemented as 3D-Var

– Daily Ocean SEEK filter – implemented as 3D-Var or EnVar

• Step-wise technical and scientific development:

– Initially, ensure that stand-alone MIDAS versions of these 
systems provide similar quality as original systems

– Make stand-alone systems more consistent: common DA 
frequency (6-hourly upper ocean analysis, including SST)

– Make it possible to run all systems within the same execution 
while allowing for different analysis grids to co-exist for each

– Scientific work to evaluate benefits of including coupling in DA, 
both in background errors and observation operators
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Strongly Coupled Atm-Ice-Ocean DA

EnVar:

Atm,

Ice,

Ocean

(SST,

Mixed-

layer)

Atmos GEM

Ocean

Ice

NEMO

+ CICE

00 UTC 06 UTC 12 UTC 18 UTC

Atm,Oce,Ice

Single 4D-EnVar 6-hourly DA for computing analysis of 
Atmosphere, Sea Ice and Upper Ocean (including SST)

EnVar:

Atm,

Ice,

Ocean

(SST,

Mixed-

layer)

GEM

NEMO

+ CICE

EnVar:

Atm,

Ice,

Ocean

(SST,

Mixed-

layer)

GEM

NEMO

+ CICE

EnVar:

Atm,

Ice,

Ocean

(SST,

Mixed-

layer)

GEM

NEMO

+ CICE
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Strategy: Towards Strongly Coupled DA

• Many benefits expected from using highly modular 
common software (even before coupled DA)

• Modular software components developed for one system 
can be easily used in another:

– Diffusion-based B matrix developed for sea-ice analysis can be 
used for SST/Upper-ocean analysis

– Horizontal footprint observation operator developed for sea-ice 
analysis can be used for atmospheric radiance observations

• By using strongly coupled 4D-EnVar for ensemble mean 
analysis, may allow transfer of most of the benefit to EnKF

• Lots of interesting science to determine practical methods 
for estimating and modelling coupled background-error 
covariances: balance operators, scale/system-dependent 
ensemble covariance localization and coupling, …
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System-dependent covariance localization
Also applies to error covariances when they are prescribed

• Positive-semidefiniteness required for physically realizable correlations

• Large differences between the systems in horizontal localization (or 
correlations themselves) results in reduction of the between-system 
covariances (e.g. atm-ocean, atm-ice):

horizontal positionv
e

rt
ic

a
l 
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v
e

l 
(s

y
s

te
m

)

Same severe horizontal localization for each system,

Cross-correlations can be maintained:

A ≠ B and C ≠ D, so A = C and B = D possible

C D

A B

horizontal positionv
e

rt
ic

a
l 
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v
e

l 
(s

y
s
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)

Very different horizontal localization for 2 systems,

Impossible to maintain cross-correlations:

A ≠ B and C = D, so A = C and B = D not possible

C D

A B
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System-dependent covariance localization
1D Idealized System

• System-dependent homogeneous spatial localization functions
(Gaussian) are specified with length scales: 10, 3, and 1.5 grid points

• Localization of between-system covariances constructed to ensure full 
matrix is positive-semidefinite: Li,j = (Li,i)

1/2(Lj,j)
1/2
 btwn systems i & j

Within system Between system

System 1

System 2

System 3

System 1,2

System 2,3

System 1,3
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System-dependent covariance localization
1D Idealized System

• Within-system and between-
system localization matrices
combined into a single “multi-
system” localization matrix

• Between-system blocks have 
diagonal values less than 1

• Could make more sense to 
apply scale-dependent 
localization to multi-system 
coupled ensemble 
covariances

• Would be interesting to 
examine between-system 
error correlation as a function 
of horizontal scale

System index
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Scale-Dependent Localization: 
Horizontal Scale Decomposition

Spectral filters for 

decomposing 

atmospheric 

covariances with 

respect to 3 horizontal 

scale ranges

Large 

scale

Medium 

scale

Small 

scale

2000 km10000 km 500 km

• Scale-dependent localization could be convenient approach for 
treating between-system covariances when dominant scales differ 
greatly between systems

• Coupling may only be significant for those scales for which both 
systems have significant amount of variance

• Same basic concept could be applied to prescribed covariances (with 
multiple length scales; e.g. NEMOVAR) or balance operator approach

Caron and Buehner, 2018, MWR
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Full Large scale

Small scale Medium scale

Perturbations for ensemble member #001 – Temperature at ~700hPa

0

-2

+2

0

-2

+2

Scale-Dependent Localization: 
Horizontal Scale Decomposition

Caron and Buehner, 2018, MWR
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Waveband integrated 

variances

Large scale
Medium scale

Small scale

Horizontal Scale Decomposition

6-h perturbation from 

256-member EnKF

h
P

a

Scale-dependent localization 

implicitly creates: 

variable- and level-dependent 

localization, would also lead to 

system-dependent localization

T

All the scales

log(q)

Caron and Buehner, 2018, MWR
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Normalized temperature 

increments (correlation-

like) at 700 hPa resulting 

from various B matrices.

Scale-Dependent Localization: 
Impact in single observation DA experiments

Bnmc

Bens No hLocBens Std hLoc

Bens SD hLoc

hLoc: 1500km / 4000km / 

10000km

700 hPa T 

observation at 

the center of 

Hurricane 

Gonzalo (October 2014)

hLoc: 2800km

0

-1

+1

0

-1

+1

0

-1

+1

0

-1

+1

Caron and Buehner, 2018, MWR
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Caron and Buehner, 2018, MWR

Bens No hLoc

Normalized temperature 

increments (correlation-

like) at 700 hPa resulting 

from various B matrices.

Scale-Dependent Localization: 
Impact in single observation DA experiments

Bnmc

Bens Std hLoc

Bens SD hLoc

hLoc: 1500km / 4000km / 

10000km

700 hPa T 

observation at 

the center of a 

High Pressure
hLoc: 2800km

0

-1

+1

0

-1

+1

0

-1

+1

0

-1

+1



Page 52 – September 11, 2018

Scale-Dependent Localization:
2D Sea Ice Ensemble

• Ensemble of sea ice concentration background fields (60 members, 
time-lagged ensemble) from the Canadian Regional Ice Prediction 
System ensemble of 3DVar analyses experiment

Ensemble mean ice concentration Ensemble spread

Buehner and Shlyaeva, 2015, Tellus
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Scale-Dependent Localization: 
Example of one ensemble perturbation

Original perturbation

Scale 4 (smallest) Scale 3

Scale 2 Scale 1 (largest)

Scale decomposition with 

a diffusion operator (that 

accounts for coastlines) 

instead of a spectral 

transform
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Assimilation of 2 observations
One obs in area dominated by large-scale error, other in area 

of small-scale error

Background field and obs

30km localization 150km localization

Scale-dep. localization

Buehner and Shlyaeva, 2015, Tellus
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Conclusions: Earth System DA

• Many DA systems for NWP moving towards:
– Use of large 3D or 4D ensembles with various localization 

approaches (e.g. scale-dependent, flow following, etc.)

– Use of increasingly high observation count and spatial resolution

– Use of hybrid approaches to benefit from advantages of each 
individual method

• Given this complexity of DA for NWP, move towards 
strongly coupled DA a scientific and technical challenge:

– Requires flexible/modular unified DA software for all systems

– Initial step: use same software for independent systems (forces 
people to work together and develop flexible/modular code)

• Potential benefits from coupled DA:
– More consistent initial conditions for coupled forecasts

– Observations of ice/ocean/land could improve atmosphere

– Account for coupling in observation operators for "coupled" obs


