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ABSTRACT

This report provides a summary of developments and experimentation studies towards monitoring and assimi-
lation of space-borne radar and lidar cloud profile observations in Numerical Weather Prediction (NWP) model.

An overview of the required adjustments of assimilation tools, such as the observation operators, observation
error definition, quality control, data screening and bias correction, in order to build a direct data assimilation
and monitoring system for such observations is provided.

Conclusions from monitoring experiments for cloud radar and lidar observations using CloudSat (NASA’s cloud
radar mission) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) data have
suggested that the skill of monitoring system to detect a degradation in the quality of observations is improved
when the first guess departures are used compared to using just observations alone.

Outcomes from 4D-Var assimilation experiments using CloudSat cloud radar reflectivity and CALIPSO li-
dar backscatter observations, either separately or in combination indicated that Four-Dimensional Variational
(4D-Var) analyses get closer to assimilated observations. However, impact of the cloud radar reflectivity is
larger than that of the lidar backscatter. Impact on the first-guess (FG) and analysis (AN) departure statistics
when verified against other observation types assimilated in 4D-Var is most pronounced and positive for con-
ventional observations, especially for wind. An impact of the new observations on the subsequent forecast is
largest for zonal wind, relative to both operational analysis and conventional observations, such as radiosonde
or aircraft data. Results also indicated an improved forecast, especially rain rates in the tropics.

Suggested perspectives for the future assimilation and a brief summary of work still required to complete
a preparation for possible operational assimilation and monitoring of the EarthCARE radar and lidar cloud
observations are also provided.
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Conclusions and recommendations

1 Introduction

Over the past few years the representation of precipitation and clouds in global Numerical Weather Prediction
(NWP) models has greatly improved and has reached a reasonable degree of realism. This opens new possibil-
ities for improvements of the atmospheric initial state and the model performance itself to be explored through
assimilation of data related to clouds from active and passive instruments. Observations providing vertical
information on clouds from space-borne active instruments on board of CloudSat (Stephens et al., 2002) and
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations Winker et al., 2009) are already
available and new ones, such as Earth, Clouds, Aerosols and Radiation Explorer (EarthCARE, Illingworth
et al., 2015) should appear in the near future. The EarthCARE mission will provide the vertically resolved
characterization of clouds by the combination of lidar (Atmospheric Lidar, ATLID) and a cloud profiling radar
(CPR) as described in the ESA report (ESA, 2004).

A number of studies, including the ESA funded project Quantitative Assessment of the Operational Value of
Space-Borne Radar and Lidar Measurements of Cloud and Aerosol Profiles (QuARL Janisková et al., 2010),
have shown that observations of clouds from space-borne radar and lidar are useful not only to evaluate the
performance of current NWP models in representing clouds, precipitation and aerosols, but they have also the
potential to be assimilated into these models to improve their initial atmospheric state. The subsequent study
(STSE Study - EarthCARE Assimilation, Janisková et al., 2014) focused on the development of an off-line
system to monitor/assimilate space-borne radar and lidar observations in clouds within the NWP model of the
European Centre for Medium-Range Weather Forecasts (ECMWF) in order to prepare for the exploitation of
radar and lidar observations in data assimilation. The studies using a technique combining one-dimensional
variational (1D-Var) assimilation with four-dimensional variational (4D-Var) data assimilation provided indi-
cations on the potential that assimilation of cloud information from active sensors could offer. However, they
also suggested that the 1D+4D-Var approach is quite expensive for profiling observations and not affordable
for operational applications due to the costly definition of errors for the pseudo-observations retrieved from
1D-Var by computing them from the 1D-Var analysis covariance matrix. Therefore for any future operational
implementation, the use of a direct 4D-Var assimilation of cloud related observations needs to be rather consid-
ered. A necessary additional activity to assimilation is to add a quality monitoring system using a global NWP
model, which is an important step before any observations can be assimilated into 4D-Var.

Following the previous studies, the current project has focused on developments towards direct assimilation and
monitoring systems to exploit cloud radar and lidar data for their assimilation in NWP models. The direct (in-
line) data assimilation and monitoring systems developed during this project allow extended research studies
beneficial for future applications of EarthCARE ATLID and CPR data once available on the global scale.

Building direct data assimilation and monitoring systems for space-borne cloud radar and lidar observations re-
quired adjustment of assimilation tools developed during the STSE Study - EarthCARE Assimilation (Janisková
et al., 2014), such as observation operator, observation error definitions (namely, representativeness and forward
operator errors), quality control, data screening and bias correction. The updates to the observation operator,
specifically the microphysical assumptions to provide physical consistency with the Integrated Forecasting
System (IFS) cloud scheme and alternative approach to account for cloud overlap, are described in WP-2000
(Observation quality monitoring and pre-processing, Fielding and Janisková, 2017a). In the same work pack-
age, a new flow-dependent representativity error method has been introduced. A bias correction scheme using
the updated model configuration and customized indicators has been also implemented. Finally, the automatic
monitoring system has been introduced and demonstrated off-line in WP-2000 as well.

The technical developments related to the handling of the actual observations have been given in WP-3000
(Assimilation system development for cloud radar and lidar observations, Janisková et al., 2017). This re-
port also described the developments to the assimilation system at ECMWF in preparation for the inclusion
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of cloud radar and lidar data directly into the 4D-Var system. The specific modifications to the assimilation
system required for the EarthCARE cloud radar and lidar data are summarized in WP-4000 (EarthCARE data
handling and testing, Fielding et al., 2017). Based on the differences between EarthCARE observations com-
pared to CloudSat and CALIPSO data, updates to the forward model the off-line observation handling of raw
EarthCARE L1b data into Binary Universal Format (BUFR) have been made.

Finally, the feasibility of assimilating CloudSat cloud radar reflectivity and CALIPSO lidar backscatter ob-
servations into a global NWP model has been demonstrated in WP-5000 (Feasibilty demonstration of 4D-Var
assimilation system using CloudSat and CALIPSO observations, Janisková and Fielding, 2018).

In this report, Section 2 provides conclusions and recommendations from developments for observation pro-
cessing, such as observation operator developments and updates, observation preprocessing, as well as sum-
mary of adjustments for the EarthCARE observations. Conclusions and recommendations for data monitoring
of cloud radar and lidar observations are outlined in Section 3. Outcomes from data assimilation experiments
for these observations are presented in Section 4 together with the suggested perspectives for the future assim-
ilation of those data. Section 5 briefly summarizes the work required to complete a preparation for possible
operational monitoring and/or assimilation of the EarthCARE radar and lidar cloud observations. Finally, a
short analysis of possible benefits using EarthCARE Multi-Spectral Imager (MSI) observations for assimila-
tion is provided in Section 6.

2 Conclusions and recommendations from developments for observation pro-
cessing

2.1 Observation operator developments and updates

The observation operator is a fundamental part of data assimilation as it transforms model variables to obser-
vations, thus allowing the model fit to observations to be assessed and improved. The observation operators for
radar reflectivity and lidar backscatter within the IFS model were developed in two previous projects (QuARL,
Janisková et al., 2010; and STSE Study - EarthCARE Assimilation, Janisková et al., 2014), however in this
current project they have been updated for in-line assimilation, where operational constraints require a balance
of efficiency and complexity. There has also been a focus on consistency; the assumptions made in the ob-
servation operators have been modified to be consistent with each other, and (as much as possible) consistent
with other forward models and parameterizations in the ECMWF 4D-Var assimilation and forecasting systems
(IFS). Without consistency, there is the possibility that observation operators for different observation types
could work against each other, preventing the model initial state from getting closer to the truth.

Two major updates were made to the operator to improve efficiency. The first was to introduce a parameteri-
zation of the hydrometeor scattering properties. In the original version of the operator, the scattering proper-
ties were found using a pre-computed look-up table as a function of temperature and in-cloud water content.
Through experimentation with different characteristic functions it was found that both radar reflectivity and
lidar backscatter could be approximated by a two-variable two-degree polynomial with six fitting coefficients.
Using the parameterization was found to be an order of magnitude faster than searching the look-up table. Sec-
ondly a much more efficient way to handle cloud overlap was devised. By partitioning the transmission into
a cloudy and a clear column, similar results can now be obtained as from the original multi-column method,
which requires the computation of at least 20 sub-columns and is not differentiable and therefore was used
for monitoring and evaluation only. The development of the double-column method allows cloud overlap to
be specified in the data assimilation, which should improve the assimilation of lidar in scenes with strong
attenuation, such as multi-layer clouds.
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Considering all the updates to the observation operator for radar reflectivity, Fig. 2.1 shows the frequency
distribution of radar reflectivity with temperature for CloudSat observations, the previous version of the ob-
servation operator and the latest version of the operator. In particular, this figure highlights the new particle
size distribution chosen for stratiform rain Abel and Boutle (2012). The new scheme’s shift towards smaller
drops for smaller water contents results in a significant reduction in radar reflectivity for water content less than
0.01 g m−3, providing a much better fit to observations. Other modifications to the microphysical assumptions
of the operator were designed to match those in the IFS cloud scheme and with each other, such as changing
the ice cloud particle type for lidar from ‘aggregate of columns’ to ‘6-bullet rosette’.

Figure 2.1: Frequency distribution of observed and simulated radar reflectivity with temperature. Panel (a) shows Cloud-
Sat observations for August 2007 after averaging at model resolution. Panels (b) and (c) show the simulated reflectivity
using the original and updated lookup tables, respectively.

2.2 Observation pre-processing

To enable the in-line assimilation of radar reflectivity and lidar backscatter within the ECMWF 4D-Var assimi-
lation system significant developments, both scientific and technical, were required. Firstly the quality control
and bias correction schemes needed to be refined compared to those used in the 1D+4D-Var experiments.
Whereas the pseudo-observations of humidity and temperature could be screened in the 1D-Var computation
before entering the 4D-Var system, direct radar and lidar profiles cannot, so a more careful screening was
required.

Quality control and screening help to prevent observations that will have a negative impact on the data assimi-
lation analysis and subsequent forecast from entering the system. There are several reasons that an observation
may not have a positive impact; they may be unphysical, the forward model may not be capable of representing
the observation, or they may cause excessive non-linearities in the observation operator. The updated screening
indicators are shown in Table 2.1. New screening indicators included the blacklisting of excessively attenuated
signals in the lidar backscatter and model levels with small cloud fraction.

2.2.1 Bias correction

Due to the updates in the observation operators and the new screening criteria, a new bias correction scheme was
required. A bias correction scheme is an important component of any data assimilation system as it ensures
systematic biases, which can have a detrimental impact on the analysis, are removed. The bias correction
scheme is based on indicators of height and temperature, thus providing an implicit regime dependence. Joint
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Indicator Min Max Reason
Height (km) 1 20 Lower limit (relative to surface) to avoid surface return, upper limit

(absolute) to discard spurious signals (although some stratospheric
clouds may be removed)

CFIFS 0.2 1.0 To avoid non-linearity and representativity issues
CFobs 0.2 1.0 To avoid non-linearity and representativity

dBZIFS, dBZobs −30 20.0 Plausible bounds for radar
dBβIFS, dBβobs −50 0.0 Plausible bounds for lidar
FG departures −20 20 Remove large departures

dBZint 0.0 41.3 Radar multpile scattering not modelled by observation operator
βint 0.0 0.02 Avoid observations with excessive attenuation

Table 2.1: Screening thresholds for CloudSAT and Calipso observations.

probability density plots of simulated and observed radar reflectivity before and after the bias correction has
been applied are shown in Fig. 2.2.

For the radar reflectivity, in a global sense, the difference between observations and model equivalent is remark-
ably unbiased and a strong correlation (a correlation coefficient of approximately 0.7) is apparent. Two modes
can be seen, one in the range -30 to -20 dBZ and one in the range 0 to 5 dBZ, corresponding to areas of ice cloud
and precipitation respectively. After bias correction, the slight underestimation of precipitation was corrected
and the overestimation of ice cloud reflectivity was reduced. For the lidar backscatter, the difference between
observations and model equivalent are greater and the correlation is less than seen for the radar reflectivity. An
underestimation in the ice cloud (with first guess around -30 dBβ ) was corrected by applying bias correction.

The bias correction will need to be recomputed each time either the IFS model or the observation operator is
updated as both will affect any systematic biases present. However, as the framework has been constructed,
it should be straight-forward to generate, providing the changes do not warrant the selection of different in-
dicators. In an operational context, it would be desirable to use variational bias correction where biases are
automatically corrected within 4D-Var, but this would require at least six months of stable observations and
significant efforts to ensure the system was performing correctly.

2.2.2 Observation error

To combine the observations and the model, the data assimilation system requires an estimate of the observation
error. Following the approach taken in previous projects, we assume that the observation error is a function of
measurement error, representativity error and forward model error. By computing these constituent parts, a
physically based estimate of the observation error is obtained. To model the representativity error, a new
technique is implemented that uses the local variability along the transect combined with correlation from a
climatology. The new method has been validated using synthetic data and MODIS radiances (Fielding and
Janisková, 2017b) and has similar performance to a more complex method based on look-up tables (Stiller,
2010). To obtain estimates of forward model error, we use a Monte Carlo approach (similar to, e.g., Kulie et al.,
2010; Di Michele et al., 2012), where microphysical assumptions are perturbed within their physical ranges.
With all components combined, this physically based estimate of observation error has the advantage of being
independent from the model background errors and should give a better estimate of the true observation error.

Figure 2.3 shows the mean observation error calculated for one month of CloudSat and CALIPSO observations.
For CloudSat radar reflectivity, representativity error tends to dominate over tropical areas, while forward model
error dominates the extra-tropics, particularly in stratiform regimes. Conversely, for CALIPSO lidar backscat-
ter, the observation error tends to be less in the tropics as the lidar has the smallest errors for regions associated
with ice cloud, such as those formed by convective outflow. The spatial magnitude of observation error for both
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(a)

(b)

Figure 2.2: Joint probability density plots of (a) simulated radar reflectivity and observed CloudSat radar reflectivity, and
(b) simulated lidar backscatter and CALIPSO lidar attenuated backscatter using observations during September 2007.
The left panel shows data before bias correction, while the right panel shows the relationship after bias correction. Only
data passing quality control are considered.

CloudSat and CALIPSO also compares favourably with the standard deviation of first guess departures.

Figure 2.3: A comparison of global maps of CloudSat radar (left side) and CALIPSO lidar (right side) mean expected
observation errors (sum of instrument, operator and representativity errors; top) versus the standard deviation of first
guess departure errors (bottom). The red ovals are to aid comparison.
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2.3 Adjustments required for the EarthCARE observations

The CloudSat radar and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar share many char-
acteristics of the EarthCARE CPR (Cloud Profiling Radar) and ATLID (ATmospheric LIDar) and have been
considered synonymous for technical testing and feasibility studies. However, to assimilate the CPR and the
ATLID with scientific meaning, several modifications are required and have been prepared for. For the radars,
the main differences between the instruments relate to the larger antenna of the CPR, which leads to greater sen-
sitivity and reduced multiple scattering. The CPR also detects the phase shift of signals, such that the Doppler
velocity of targets can be measured. For the lidars, the differences are potentially more significant; the wave-
length of the instruments are also different, which leads to different cloud and molecular scattering properties.
The smaller field of view of the ATLID also leads to reduced multiple scattering.

Specifically, the main conclusions from adapting the forward models to EarthCARE specifications were that:

• The CPR will detect significantly smaller hydrometeors (the 7 dB increase in sensitivity will detect
particles with up to 30% smaller radii), which should halve the number of clouds missed (particularly ice
clouds) and allow greater synergy with the lidar.

• The sensitivity in total attenuated backscatter is less for ATLID due to the increased molecular backscatter
at 355nm compared to CALIPSO.

• The effects of multiple scattering are likely be similar in the two lidars due to compensating effects of
ATLID’s narrower field of view, yet shorter wavelength.

Technical changes needed to process the EarthCARE data into a format that can be ingested and used by the data
assimilation system were also developed. Developments focused on the tools to convert the L1b data format
into BUFR, which required the definition of new BUFR descriptors. Some changes to the data selection, pre-
processing and screening were needed, particularly in relation to the cloud masks, which will not be provided
in the L1b raw data. Tests demonstrating the technical capability of the system to assimilate EarthCARE data
were made, making use of the A-NOM and C-NOM test data produced using a high-resolution model and the
EarthCARE Simulator (Fielding et al., 2017).

Some developments will be necessary in the commissioning phase of the EarthCARE mission, particularly in
relation to tuning of the bias correction and screening schemes, observation error specification but the frame-
work for assimilating EarthCARE observations is now in place.
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3 Conclusions and recommendations for data monitoring of cloud radar and
lidar observations

Before any new observations are actively assimilated in the ECMWF 4D-Var system, they are passively mon-
itored, along with all the actively assimilated observations, ensuring that both the observations and model are
behaving as expected. Due to the vast quantities of data involved, the monitoring system at ECWMF is au-
tomated, where selected indicators are checked against expected ranges. Alerts are automatically triggered
and sent to analysts for further investigation if the observations exceed these ranges. In addition, alerts can be
sent to other relevant parties, including instrument mentors, which could be critical in detecting and correcting
problems with satellite data in a timely manner.

3.1 Performed experiments

Before showing examples of cloud radar and lidar data within the automated monitoring system, indicators
were chosen and statistics generated to set the expected ranges of the data. Figure 3.1 shows statistics for 12-
hour mean indicators of observation value only and the first guess departures for both radar reflectivity and lidar
backscatter. The hard limits, designed to detect drifts in the observations or model are set (red dashed lines)
using a threshold in the standard deviation. As the indicators’ distributions resemble normal distributions, the
data is suitable for monitoring and detecting errors.

To show the power of combining observations and model information within a monitoring system to de-
tect instrument problems, an experiment was carried out where artificial drifts were applied to CloudSat and
CALIPSO data. Figure 3.2 shows an example where a 1% decrease per day was applied to the CloudSat radar
reflectivity, leading to a total bias of 3 dB after two months. No automatic alerts due to the drift were triggered
when considering observations only (Fig. 3.2a), whereas alerts were triggered around 30 days after the bias
was introduced when considering the combination of observations and model (Fig. 3.2b).

(a)

(b)

Figure 3.1: Histograms of 12-hour global mean observations and model equivalent related variables for a three month
period between August - September 2007. Panels on left side show observation related variables: (a) mean CloudSat
radar reflectivity and (b) mean CALIPSO lidar attenuated backscatter. Panels on right side show observation and model
related variable - mean first guess departures for (a) radar reflectivity and (b) lidar backscatter. The black dashed line
in each panel shows the Gaussian distribution with the mean and standard deviation of the data. The red dotted lines
indicate 5 standard deviations from the mean.
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A similar conclusion is reached when considering the articifical drift in CALIPSO observations of lidar backscat-
ter (Fig. 3.3. However, in this case, due to the narrow dynamic range of CALIPSO attenuated backscatter
compared to CloudSat radar reflectivity, the artificial drift is first detected after 20 days in observations alone.
In contrast, using the combination of observations and model the first alarm is triggered after 15 days and the
bias is much more apparent with many more alerts triggered by the end of the two month period considered.

3.2 Summary and perspectives

The automatic monitoring system at ECMWF is a powerful tool for analysing the performance of both the
model and observations. By considering both observations and model together, we have shown that drifts in
the calibration of an instrument can be detected much faster than considering observations alone. In this sense,
monitoring of the EarthCARE instruments at ECMWF could provide extremely valuable information for ESA
instrument mentors in the timely detection, quantification and correction of instrument problems to minimize
the impact on other data users.

(a)

(b)

Figure 3.2: Example of CloudSat data within the automatic monitoring system using (a) observation-only indicators
of global mean radar reflectivity and (b) using combined observation and model indicators of global mean first guess
departures where a 1% per day drift in observed radar reflectivity has been introduced at day 10.
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(a)

(b)

Figure 3.3: Same as Fig. 3.2, but for CALIPSO data of lidar attenuated backscatter.
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4 Conclusions and recommendations from data assimilation experiments for
radar and lidar

4.1 Performed experiments

In order to study the impact of space-borne cloud radar and lidar observations on analyses and subsequent fore-
cast, 4D-Var assimilation system used at ECMWF has been updated to account for these new observation types.
This required a lot of development described in the previous sections, such as modifications and developments
to observation operators, observation error definition and data handling for observations (i.e. quality control,
screening and bias correction). After technical testing of the correctness of the updated system, 4D-Var as-
similation experiments have been performed using cloud radar reflectivity and lidar backscatter. Using the full
system of regularly assimilated observations at ECMWF and assimilation cycles of 12-hours (i.e. the current
length of 4D-Var assimilation window at ECMWF), several experiments have been performed over 10 days
covering 1-10 August 2007 period adding the new observations to the system. 4D-Var experimentation has
been done using a horizontal resolution of TCo639 spectral truncation (corresponding to approximately 18 km
on a cubic octahedral grid) and 137 vertical levels. Measurements of cloud radar reflectivity (in dBZ), from the
CloudSat 94 GHz radar and/or lidar backscatter (in dB, when using logarithmic scale) due to clouds at 532 nm
from CALIPSO for the selected situations have been averaged to the model horizontal resolution approximately
36 km. This is twice coarser than experimental horizontal resolution in order to obtain smoother observation
field for data assimilation.

Several 4D-Var experiments have been run with different setups to study the impact of the new cloud radar and
lidar observations, either each of them separately or together and then without or in combination with other
regularly assimilated observations. The impact of observation error definition on the performance has been also
investigated.

Impact of added observations on 4D-Var analyses has been investigated by comparing the first-guess depar-
tures (differences between observations and the model first guess) against the analysis departures (differences
between observations and analysis). Verification of the performed assimilation runs has also been carried out
against other assimilated observation types in 4D-Var. Analysis increments of temperature and specific humid-
ity have been evaluated as well since they can provide information about the impact of assimilated observations
on the control variables of 4D-Var system.

From obtained 4D-Var analyses, 10 day forecasts have been run to study the impact of these new observations
on the subsequent forecasts. The comparisons have been concentrated on the forecast of specific humidity,
temperature, wind over the whole globe and precipitation over the tropics.

4.2 Summary of the results

4.2.1 Impact on the analysis

The performed experiments have shown that 4D-Var provides analysis departures closer to cloud radar and
lidar observations than would be obtained if these observations were not assimilated. Probability distribution
function (PDF) of the first-guess (FG) and analysis (AN) departures for the cloud radar reflectivity and li-
dar backscatter shown on Fig. 4.1 for the different assimilation experiments (as specified in figure caption)
indicates that analysis including radar and lidar observations together with all other normally assimilated ob-
servations provides better PDF distribution than the reference run. Obviously, the most symmetric PDF shapes
are achieved when assimilating just the new observations alone.
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Figure 4.1: Probability distribution functions of the first guess departures before (black dotted line) and after (black
solid line) bias correction applied combined with the analysis departures for the reference experiment (REF, red solid
line), experiment assimilating cloud radar and lidar observations with all other normally assimilated observations
(ALL RAD LID, blue solid line), experiment assimilating cloud radar and lidar observations only (RAD LID, orange
solid line) and assimilation using lidar observations only (LID, violet solid line). Results are presented for (a) radar re-
flectivity and (b) lidar backscatter departures (dB) over the whole globe. Situation 2007080100 with 12-hour assimilation
period between 31 July 2007 21:00 UTC and 1 August 2007 09:00 UTC.

The fact that analysis is getting closer to the radar and lidar observations has been also demonstrated by along-
track evaluation which allowed to investigate the performance of the system in more details by looking at
individual clouds. For radar reflectivity, the comparisons clearly showed that the despite some discrepancies
the first-guess radar reflectivity generated from the background field (Fig. 4.2b) is very similar to the averaged
CloudSat radar reflectivity, thus indicating that the model equivalents are sufficient to extract information from
the observations. Whereas the fit of the first-guess radar to the observations was impressive, there were greater
differences between the averaged CALIPSO lidar backscatter and the first-guess model equivalent (Fig. 4.3b).
As expected, the analysis provides a closer fit to the observations which is more pronounced for the analysed
radar reflectivity (Fig. 4.2c). More mixed results for the cloud lidar backscatter (Fig. 4.3c) might be related
to ambiguities in generating the analysis increments; increasing cloud amount at the top of the cloud to match
the observations could also result in corrections of the departures at the base of the cloud due to the increased
attenuation of the modelled signal leading to an excess of cloud in the model. Investigations will be done
whether assimilating the whole profile rather than just when there is cloud in both model and observations
might help to solve this problem.

Impact of the new observations on 4D-Var analysis when compared against own observations based on statistics
for 10 days of assimilating cycling further confirmed that overall analysis is getting closer to these observations
(Fig. 4.4). Note that to ensure meaningful statistics when considering variables in logarithmic space, an addi-
tional screening step is applied to the results to reject absolute departures (both AN and FG) greater than 20
dB for radar reflectivity and 10 dB for lidar backscatter. The radar reflectivity statistics clearly shows that the
root mean square error (RMS) as well as bias are consistently smaller when radar and lidar observations are
assimilated. Comparing to the CALIPSO data, the AN RMS is generally smaller and the magnitude of bias in
AN departures is reduced in majority levels when all observations are assimilated.

Verification of the performed assimilation runs has also been carried out against other assimilated observa-
tion types in 4D-Var. The results indicated that mainly for conventional observations (such as TEMP ra-
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1 100 200 300 400 500 600 700 800 900 1000
Profiles

Figure 4.2: Cross-sections of radar reflectivity related variables corresponding to the portion of orbital track (21:00 UTC
31st July 2007). Panels show (a) observed CloudSat radar reflectivity (dBZ), (b) model equivalent (FG) radar reflectivity
using the model background (dBZ) and (c) model equivalent (AN) radar reflectivity using the model analysis from the
assimilation experiment using all observations with radar and lidar (ALL RAD LID). Note that the first guess radar
reflectivity is only displayed where there are hydrometeors detected in both model and observations. To elucidate the
position of the model clouds, the first-guess model cloud boundaries are shown in grey.

1 100 200 300 400 500 600 700 800 900 1000
Profiles

Figure 4.3: Same as Fig. 4.2, but for CALIPSO lidar backscatter.

diosonde, PILOT or AIREP observations), bias and standard deviations of the background departures are overall
marginally smaller in the experimental runs compared to the reference run not using the new cloud radar and
lidar observations (Fig. 4.5). The largest impact of these observations is observed for wind. For all other types
of observations assimilated in 4D-Var, no significant changes have appeared when considering observations-
minus-background and observations-minus-analysis departure statistics. Generally, it is not easy to achieve a
significant improvement in the experimental run compared to the reference one over a domain well covered by
a large amount of other measurements. Therefore any improvement is encouraging since it indicates a potential
benefit from assimilating cloud information.
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Figure 4.4: Root mean square error (left) and bias (right) of background departures (solid line) and analysis departures
(dotted line) with respect to (a) cloud radar reflectivity and (b) cloud lidar backscatter observations for the reference
experiment (REF, red) and experiment assimilating in addition cloud radar reflectivity and lidar backscatter observations
(ALL RAD LID, black) using double observation errors. The number of observations for the period from 1 August 2007
00:00 UTC to 10 August 2007 12:00 UTC is displayed in the middle. Results are shown for the whole globe. The larger
the model level number, the closer it is to the surface (i.e., level 117 is approximately 1km above the surface and level 70
is approximately 13 km above the surface).

4.2.2 Impact on the subsequent forecast

The evaluation of the impact of the assimilation of cloud radar and lidar observations on the skill of subsequent
forecasts has been done in terms of differences in the rms forecast error between the forecasts starting from
analysis assimilating these new observations and the forecast starting from the reference analysis. Both experi-
ment’s forecast errors have been computed with respect to the operational analysis. Zonal means of these rms
error differences are shown for specific humidity, temperature and zonal wind in Fig. 4.6 for one assimilation
cycle with the analysis time 00:00 UTC 1 August 2007. The forecast generated using the experimental anal-
ysis shows an increase in forecast skill of temperature and wind, with the greatest increases in three regions;
one in the NH extra-tropics, one just north of the equator corresponding to the Inter-Tropical Convergence
Zone (ITCZ), and a third in the SH extra-tropics. These three regions correspond to locations with the greatest
quantity of cloud and hence radar and lidar observations.

Investigation of the forecast skill by verification of the forecast against operational analyses also indicated
that while the radar provided the largest impact on forecast errors, assimilating both radar and lidar has the
greatest total benefit to the forecast. In agreement with the degradation of the analysis fit to wind observations
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Figure 4.5: Normalised standard deviation (left) and bias (right) of background (solid line) and analysis departures
(dotted line) with respect to TEMP (a) zonal wind, (b) temperature and (c) specific humidity observations for the refere-
nce run (REF, red) and experiment assimilating in addition cloud radar reflectivity and lidar backscatter observations
(ALL RAD LID, black) using double observation errors. The number of observations for REF experiment (nobsRef)
for the period from 1 August 2007 00:00 UTC to 10 August 2007 12:00 UTC is displayed in the middle together with
negative red and positive black numbers indicating how many less or more, respectively, observations are used by the
ALL RAD LID run. Results are shown for the whole globe.

when decreasing radar and lidar observation errors shown in WP-5000 (Janisková and Fielding, 2018), a clear
decrease in forecast skill has been also observed. One reason for the degradation is that by decreasing the
observation errors for radar and lidar, the model is forced to drawn away from other assimilated observations
elsewhere in the model that contain useful information. Another reason is that fitting the model too closely
to the observations can actually pull the model analysis further from the truth, particularly for profiling cloud
radar and lidar observations that can have large representativity errors and uncertainties in the forward models.
This highlights how much potential improvement could be gained from careful adjustments to the observation
error.
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Figure 4.6: Zonal mean of differences of (a) specific humidity (g.kg−1), (b) temperature (K) and (c) wind (m s−1) rms
errors for the differences between the 48-hour forecasts starting from analysis created by 4D-Var assimilation of cloud
radar reflectivity and lidar backscatter observations with doubled observation errors and the operational analysis and
between the forecast starting from the reference analysis and the operational analysis. Situation 2007080100 with 12-
hour assimilation period between 31 July 2007 21:00 UTC and 1 August 2007 09:00 UTC. Reduction (resp. increase) of
rms errors for the experimental run is shown with blue (resp. red) shadings.

In addition to verifying forecast against model analyses, verification against observations has been also done.
For longer forecast lead times the observations used in the verification are getting increasingly independent,
although the observation coverage is limited compared to verifying against an analysis, so any signals are likely
to require longer cycling times to remove noise. Based on 10-day assimilation cycling, forecast departures
with respect to TEMP (radiosonde) observations (Fig. 4.7) indicated an increased skill in predicting tropo-
spheric winds in the experimental run compared to the reference run for the 24 hour forecasts in the Northern
hemisphere, where the observations are densest. The skill in 48 hour forecasts is reduced, but still comparable
to the reference forecast. Statistics for the tropics and the Southern hemisphere are noisy, suggesting signifi-
cantly more assimilation cycling is required to draw any significant conclusions. A similar pattern of increased
skill in the shorter term forecasts relative to the reference has be seen in radiosonde temperature and humidity
observations with the greatest improvements in the Southern hemisphere.

Assessment of rain rates in the tropics using independent observations from TRopical Measurement Mission
(TRMM) has shown that the RMS in short-term surface rain rate forecasts over the tropics compared to TRMM
is reduced by around 2 % when assimilating CloudSat radar reflectivity and CALIPSO lidar backscatter (Fig.
4.8). The RMS is reduced a further 1 % when using the forecasts initialised with the double error analysis, in
agreement with the improved fit to other observation types (e.g., radiosonde) when using double errors.

4.3 Perspectives

The performed studies have provided indications on a potential which assimilation of cloud information from
active sensors could offer. The feasibility to assimilate such observations directly into 4D-Var system in the
global scale has been demonstrated for the first time. Gaining benefit on forecast skill by including new observa-
tions into a well-established observing system is extremely difficult, so the results presented here are extremely
promising and warrant the opening of many avenues of further research that were not able to be explored here.
The sensitivity of the results to the prescribed observation error was shown to be large and it is envisaged that
relatively easy gains in forecast skill would be achievable through careful tuning. The behaviour of the assim-
ilation system for different regimes, for example the effect of cloud radar and lidar on convective situations,
requires further work and could result in improvements in the forward operator assumptions or screening crite-
ria. No attempt was made to optimise the pre-processing of the observations, so investigations of the averaging
scale and possible thinning of the observations in both the horizontal and vertical would be beneficial. Finally,
investigation of the synergistic benefit of cloud radar and lidar observations to other observation types related to
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Figure 4.7: Normalised standard deviation of forecast departures with respect to TEMP (radiosonde) observations for
24h (solid line) and 48h (dotted line) forecasts shown for the experiments assimilating cloud radar reflectivity and lidar
backscatter observations using double observation errors and combined with all other routinely assimilated observations.
Results are shown for (left) Northern Hemisphere, (middle) Tropics and (right) Southern Hemisphere and for (a) specific
humidity, (b) temperature and (c) zonal wind. The number of observations (nobsRef) for the period from 4 August 2007
00:00 UTC to 10 August 2007 12:00 UTC is displayed at the right side of each profile.

clouds, in particular the all-sky radiance assimilation framework used at ECMWF, is worthy of further research
in the future.
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Figure 4.8: Root-mean-square error (RMS) between TRMM and forecast near-surface rain rates for varying forecast lead
times of up to 3 days. Statistics are generated from forecasts initialised at 00:00 UTC and 12:00 UTC using the reference
analysis (REF; blue) and all observations analysis (ALL RAD LID; red). The solid lines indicate a 12 hour averaging
window, while the dashed lines indicate a 24 hour averaging window.
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5 Required work towards monitoring and assimilation of EarthCARE radar
and lidar observations

During the current project, whose main outcomes are summarized in Sections 2, 3 and 4, the focus was concen-
trated on preparing direct data assimilation and monitoring systems to exploit combined space-borne lidar and
radar cloud observations for their assimilation in Numerical Weather Prediction (NWP) models. The project
demonstrated the feasibility of 4D-Var assimilation of such observations using CloudSat and CALIPSO data.
It thus provided necessary developments and experimentations important for further work towards prepara-
tion for the future possible operational assimilation/monitoring of the EarthCARE observations. However, the
successful real-time assimilation of EarthCARE observations relies on a number of further tasks:

- For the analysis and forecast of an NWP model to gain benefit from any observations, scientific testing
and tuning is necessary, particularly for new observation types.

- Additional work needs to be devoted to the optimization of the impact of space-borne cloud radar and
lidar observations in an operational 4D-Var assimilation system, ensuring no degradation of the impact
of other observations and forecast scores. This will involve:

+ optimization of observation usage in data assimilation system;
+ matching of the scale of observations and model to improve representativity of observations;
+ tuning of observation errors and an investigation to characterise their correlation (likely to be sig-

nificant in the vertical);
+ extensions to lidar observation operator to more accurately account for multiple scattering (in ice

cloud);
+ exploration of possibility to use variational bias correction (VarBC) as a tool to treat and monitor

bias;

- To expedite the tuning of the system when EarthCARE is launched, a framework for testing cloud radar
and lidar observations needs to be established.

Around six months prior to launch, preparations are required to be made as details of the mission are finalised.
This will include a rehearsal of the data flow where support for the communication between the operations team
and the ESA ground segment will be provided. An investigation of the impact of the expected data latency in
relation to cut-off times for the data assimilation needs also to be done, including the simulation of orbits. These
technical preparations will allow the best possible use of the commissioning phase of the mission, where the
first testing of real EarthCARE data will begin. Once the operational phase of the mission begins, on-going
monitoring of measurements and their impact on the data assimilation system will need to be performed. Longer
periods of the use of EarthCARE observations in the data assimilation system will allow for a comprehensive
evaluation of their benefit to NWP.

Throughout the pre-launch, commissioning and operational phases an on-going effort is also required to align
developments to the system related to the assimilation of cloud radar and lidar with operational model upgrades
and other modifications to the data assimilation system. Without these updates, existing code can quickly
become obsolete to the point that is unusable and in need of complete re-writes.
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6 Brief analysis of possible benefits of using EarthCARE MSI observations for
assimilation

The Multi-Spectral Imager (MSI) instrument is designed to provide a broader meteorological context to the
narrow footprints of the EarthCARE radar and lidar observations. The MSI has seven spectral bands: one
visible (VIS), one near-IR (NIR), two short-wave IR (SWIR) and three thermal IR (TIR). It has a swath width of
150 km with a pixel resolution of 500m, allowing it to resolve the 2D horizontal structure of clouds. Indirectly,
the information could be used to provide extra information to the assimilation about the representativity of the
radar and lidar observations. However, extrapolating the integrated view of the MSI to the vertically resolved
profiles given by the radar and lidar is not straight-forward. Further, the observation error model currently in
use based on the along-track variability is probably sufficient to determine the representativity error, so further
investigations are probably not warranted. Of greater interest, therfore, is the potential for direct assimilation
of the MSI radiances themselves.

Following the success of the assimilation of cloudy microwave radiances, the assimilation of TIR and SWIR
channels for cloudy scenes is currently being developed and it is perceivable that, with substantial technical ef-
fort, these MSI channels could be assimilated given the availability of existing forward models such as RTTOV.
Assimilating the remaining channels poses a greater challenge overall, particularly scientifically; no NWP cen-
tres currently assimilate VIS and NIR radiances. One reason for the difficulty in assimilating radiances from
VIS and NIR channels historically has been the lack of suitable radiative transfer models to provide the model
equivalents with sufficient speed and accuracy. However, there are fast radiative transfer models in devel-
opment: the Method for Fast Satellite Image Synthesis (MFASIS; Scheck et al., 2016) based on compressed
look-up tables, and the Forward-Lobe Two-Stream rAdiance Model (FLOTSAM, see Escribano et al., in prep.),
which could potentially be used, although their adjoints would also need to be computed and tested.

Having stated the challenges to the direct assimilation of EarthCARE MSI observations, it is also worth men-
tioning the reward; the MSI radiances are expected to have a beneficial impact on synergistic retrievals of cloud
and aerosol properties so should, in theory, enhance the impact of radar and lidar on the analysis and forecast.
The use of instrument synergy from cloud-related observations is an emerging area of data assimilation, and is
likely to grow in importance as model resolution continues to increase and clouds are better resolved in forecast
models.
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List of Acronyms

1D-Var One-Dimensional Variational Assimilation
4D-Var Four-Dimensional Variational Assimilation
A-NOM ATLID Nominal data
AN Analysis
AIREP AIRcraft Weather REPort
ATLID ATmospheric LIDar
BUFR Binary Universal Form for the Representation of meteorological data
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
C-NOM CPR Nominal data
CloudSat NASA’s cloud radar mission
CPR Cloud Profiling Radar
EarthCARE Earth, Clouds, Aerosols and Radiation Explorer
ECMWF European Centre for Medium Range Weather Forecasts
ECSIM EarthCARE SIMulator
ESA European Space Agency
ESTEC European Space Research and Technology Centre
FG First Guess
FLOTSAM Forward-Lobe Two-Stream rAdiance Model
IFS Integrated Forecasting System of ECMWF
IR Infrared
ITCZ Inter-Tropical Convergence Zone
MFASIS Method for Fast Satellite Image Synthesis
MSI Multi-Spectral Imager
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NH North Hemisphere
NIR Near Infrared
NOAA National Oceanic and Atmospheric Administration
NWP Numerical Weather Prediction
OBS OBServations
PDF Probability Distribution Function
QuARL Quantitative Assessment of the Operational Value of Space-Borne Radar

and Lidar Measurements of Cloud and Aerosol Profiles
rms/RMS root mean square error
RTTOV Radiative Transfer for TOVs
SH South Hemisphere
STSE Support-to-Science-Element
SWIR Short-Wave Infrared
TCo639 Model cubic octahedral grid with spectral truncation T639
TIR Thermal Infrared
TIROS Television and Infrared Observation Satellite
TOVS TIROS Operational Vertical Sounder
TRMM Tropical Rainfall Measurement Mission
UTC Universal Time Coordinated
VarBC Variational Bias Correction
VIS Visible (spectral band)
WP Work Package
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Fielding, M., M. Janisková, and R. Hogan, 2017: EarthCARE data handling and testing, WP-4000 report for the
project Operational Assimilation of Space-borne Radar and Lidar Cloud Profile Observations for Numerical
Weather Prediction, ESA ESTEC contract 4000116891/16/NL/LvH, 29 pp.
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