

Kohei Kawano Numerical Prediction Division, Japan Meteorological Agency (JMA)

# Outline

- Nonhydrostatic model ASUCA
- Issues of suspicious convection growth seen in the JMA's regional model
  - are these issues due to simple coupling "isobaric physics with isochoric dynamics" ?
- Consideration and trial on coupling isobaric physics with isochoric (height-based) dynamics
  - To explore these issues, another coupling method which incorporates the change of cell volume in condensation is tested
    - Description of the coupling method
  - Tests and Results

# specification of the dynamical core "ASUCA"

|                        | ASUCA                                                                                       |
|------------------------|---------------------------------------------------------------------------------------------|
| Governing equations    | Flux form<br>Fully compressible equations                                                   |
| Prognostic variables   | ρu, ρv, ρw, ρθ <sub>m</sub> , ρ                                                             |
| Spatial discretization | Finite volume method                                                                        |
| Time integration       | Runge-Kutta 3 <sup>rd</sup><br>(long and short)                                             |
| Treatment of sound     | Conservative Split explicit                                                                 |
| Advection              | Combining 3 <sup>rd</sup> and 1 <sup>st</sup> order upwind with flux limiter by Koren(1993) |
| Numerical diffusion    | None                                                                                        |
| Treatment of rain-drop | Time-split                                                                                  |
| Coordinate             | Generalized coordinate or<br>Conformal mapping + constant height-based                      |
| Grid                   | Arakawa-C (hor.)<br>Lorentz (ver.)                                                          |

# **Time integration loop of ASUCA**

(Simplified from the viewpoint of dynamics-condensation)



# motivation

- JMA's operational regional model
  - issues of suspicious convection growth



気象

# motivation

- at a column convection is occurred
  - repeat of local pressure increasing and decreasing
    - pressure increase (>2hPa/15s) by latent heat
    - mitigating local high pressure through following dynamics steps
    - are repeated every time step. It seems unrealistic.
- extremely strong updraft



### motivation

- Our suspicion: are these two issues due to simple coupling "isobaric physics with isochoric dynamics" ?
  - explore the issues comparing to another coupling method which incorporates the change of cell volume in condensation.

 $\downarrow$  We refer to this slide concept



Alex Reinecke et al: COUPLING PHYSICAL PARAMETARZATION TO A THREE-DIMENSIONAL SEM MODEL.

ECMWF workshop:Shedding light on the greyzone https://www.ecmwf.int/en/learning/workshops/shedd ing-light-greyzone

#### 48h NEPTUNE forecast

۲

- Most significant difference in tropical upper troposphere
  - Large difference associated with deep convection in tropics

# Outline

- Nonhydrostatic model ASUCA
- Issues of suspicious convection growth seen in the JMA's regional model
  - are these issues due to simple coupling "isobaric physics with isochoric dynamics" ?
- Consideration and trial on coupling isobaric physics with isochoric (height-based) dynamics
  - To explore these issues, another coupling method which incorporates the change of cell volume in condensation is tested
    - Description of the coupling method
  - Tests and Results

- Current coupling
  - passes inputs to physics, then receives tendencies ( $\Delta \theta$ )
  - assume that total density in each cell is kept constant.  $\Rightarrow dp \neq 0$



- Coupling (Test): incorporates the change of cell volume in condensation
  - passes inputs to physics, then receives tendencies ( $\Delta \theta$ )
  - assume that pressure in each cell is kept constant.  $\Rightarrow d\rho \neq 0$ 
    - incorporates the change of cell volume
    - Tendencies could be distributed to multiple cells



- Coupling (Test): incorporates the change of cell volume in condensation
  - passes inputs to physics, then receives tendencies ( $\Delta \theta$ )
  - assume that pressure in each cell is kept constant.  $\Rightarrow d\rho {\neq} 0$ 
    - incorporates the change of cell volume
    - Tendencies could be distributed to multiple cells



- Coupling (Test): incorporates the change of cell volume in condensation
  - passes inputs to physics, then receives tendencies ( $\Delta \theta$ )
  - assume that pressure in each cell is kept constant.  $\Rightarrow d\rho {\neq} 0$ 
    - incorporates the change of cell volume
    - Tendencies could be distributed to multiple cells



- Coupling (Test): incorporates the change of cell volume in condensation
  - passes inputs to physics, then receives tendencies ( $\Delta \theta$ )
  - assume that pressure in each cell is kept constant.  $\Rightarrow d\rho {\neq} 0$ 
    - incorporates the change of cell volume
    - Tendencies could be distributed to multiple cells



- Coupling (Test): incorporates the change of cell volume in condensation
  - passes inputs to physics, then receives tendencies ( $\Delta \theta$ )
  - assume that pressure in each cell is kept constant.  $\Rightarrow d\rho {\neq} 0$ 
    - incorporates the change of cell volume
    - Tendencies could be distributed to multiple cells



#### dx=dz=100m dt=10s Warm bubble test



- Check the representation of warm bubble rising
  - [Initial state]: add PT perturbation(+6.6K), and make initial state (vertically balanced)
  - [<u>Tend\_cntl</u>]: add PT tendency(+6.6K/ $\Delta$ t) at adjustment physics in 1<sup>st</sup> step with current coupling
  - [<u>Tend\_test</u>]:add PT tendency (+6.6K/Δt) at adjustment physics in 1<sup>st</sup> step with experimental coupling incorporates the change of cell volume
- As for [<u>Tend\_cntl</u>] and [<u>Tend\_test</u>], does it work? How is the Initial behavior comparing to [Initial state]? Is there any obvious difference in the final distribution of W or PT among these tests?

#### Initial behavior is different between [Tend\_cntl] and [Tend\_test]

#### W [m/s]





W [m/s]





# From a warm bubble test

- Current coupling
  - can represents the main characteristics of rising warm bubble
    - strength of updraft does not change comparing to [initial state] test
  - tend to generate acoustic waves
    - by the repeat of local pressure increasing and decreasing
- Experimental coupling
  - can represents the main characteristics of rising warm bubble
    - strength of updraft does not change comparing to the current coupling
  - not generate acoustic waves
    - repeat of local pressure increasing and decreasing is modified, as expected

## "extremely strong updrafts" case

TEST



extreamly strong updrafts



(>20m/s)

2000



# Conclusion

- Issues of suspicious convection growth seen in the JMA's regional model
  - repeat of local pressure increasing and decreasing
  - extremely strong updraft
- Simple coupling method which incorporates the change of cell volume (isobaric) in condensation is tested
  - can mitigate repeat of local pressure increasing and decreasing
  - do not affect to mitigate the strength of updraft
    - we need to keep study to address the strong updraft issue including another approach other than PDC coupling

### BACKUP

⑤ 気象庁 Japan Meteorological Agency



#### pressure change from initial state

Pressure increased at cells PT tendency is added



#### Pressure increased above cells PT tendency is added





#### pressure change from initial state

### Local high pressure is mitigated through following dynamics steps





צו



#### pressure change from initial state

### Local high pressure is mitigated through following dynamics steps







צו



#### pressure change from initial state







# ASUCA's prognostic variable involved with energy

$$\rho \theta_{\rm m} = \rho \theta A \qquad \rho = \rho_{\rm d} + \rho_{\rm v} + \rho_{\rm c} + \rho_{\rm r} + \cdots$$
$$A \equiv \frac{1}{\rho} (\rho_{\rm d} + \epsilon \rho_{\rm v})$$
$$= 1 + (\epsilon - 1)Q_{\rm v} - \sum_{\alpha \neq {\rm d}, {\rm v}} Q_{\alpha}$$

Equation of state

$$p = (\rho_{\rm d} R_{\rm d} + \rho_{\rm v} R_{\rm v})T$$
  
=  $(\rho_{\rm d} + \epsilon \rho_{\rm v})R_{\rm d}T$  ( $\epsilon = R_{\rm v}/R_{\rm d}$ )  
=  $\rho A R_{\rm d}T$  ( $\rho_{\rm d} = \rho(1 - Q_{\rm v} - Q_{\rm c} - \cdots)$ )  
=  $\rho \theta A R_{d}\pi$ 

### Schematic structure of the "Physics Library"



- The "Physics Library" is designed to be plugged in easily to any models
- The physical processes implemented in the "Physics Library" are vertically one-dimensionalized.
- ASUCA passes inputs (Vars(nz)) to library, then receives tendencies (tendency(nz)) from library.

### Implementation of physical processes

- Physical processes are expected to provide tendencies. ASUCA just receives tendencies and temporally integrate with them.
- Column based physical processes include only the vertical onedimensional loop
- The horizontal loops are parallelized using OpenMP.
- Modularity and high efficiency are satisfied

