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Motivation

I Convective Memory
I Existing schemes transport energy, moisture and momentum but not mass

I Convection modellers have been trying to work out how to transport mass
for decades. Best efforts so far:
I Kuell and Bott [2008]
I Extended EDMF [Tan et al., 2018]

I It is a dynamics problem as well as convection parameterisation problem
I Here is how to do it
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Conditional Filtering [Thuburn et al., 2018]
I Each location of the continuous fluid is given one of a number of labels,

depending on the model complexity. Eg:

I0(x, t) =

{
1 if fluid is in stable atmosphere
0 otherwise

I1(x, t) =

{
1 if fluid is in a buoyant plume
0 otherwise

I2(x, t) =

{
1 if fluid is in a downdraft
0 otherwise

I Apply a spatial filter, for example averaging over grid boxes:

σi = Ii

ρi = Iiρ

ρiui = Iiρu
ρiθi = Iiρθ

I Derive equations of motion for each fluid and parametrise interactions
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Conditionally Filter the Compressible Euler Equations

∂σiρiui

∂ t
+∇ ·

(
σiρiuiui +Fui

SF

)
+ cpIiρθ∇π −σiρig = ∑

j6=i
(σjρjujSji −σiρiuiSij)

∂σiρi

∂ t
+∇ · (σiρiui) = ∑

j6=i
(σjρjSji −σiρiSij)

∂σiρiθi

∂ t
+∇ ·

(
σiρiuiθi +Fθi

SF

)
= ∑

j6=i
(σjρjθjSji −σiρiθiSij)

Note sub-filter scale fluxes (due to non-linearities):

Iiρuθ = σiρiuiθi +Fθi
SF

Iiρuuθ = σiρiuiui +Fui
SF

Assume that pressure is uniform between fluids and that:

Iiρθ∇π = σiρiθi∇π +∑
j 6=i

σiσjdij +FΠi
SF

I dij is drag exerted by fluid j on fluid i
I σiρiSij is mass transfer rate from fluid i to fluid j
I Straightforward to do the same for moisture variables



Advective Form

Need to solve in advective (or vector invariant) form to avoid problems when
σi → 0 and for bounded advection of σi. Ignoring sub-filter-scale fluxes:

∂ui

∂ t
+ui ·∇ui =−2Ω×ui − cpθi∇π +g+∑

j 6=i

(
σjρj

σiρi
Sji(uj −ui)−Dij

)
∂σiρi

∂ t
+∇ · (σiρiui) = ∑

j6=i
(σjρjSji −σiρiSij)

∂θi

∂ t
+ui ·∇θi = ∑

j6=i

(
σjρj

σiρi
Sji(θj −θi)

)

Equation of State p0π
1−κ

κ = Rρiθi = Rρθ = R∑i σiρiθi



Numerical Solution [Weller and McIntyre, submitted]

I Finite Volume Advection
I Bounded advection of σiρi (TVD scheme with van-Leer limiter)
I θi and ui advected using using flux form operators:

ui ·∇θi = ∇ · (θiui)−θi∇ ·ui

I Lorenz C-grid staggering
I Semi-implict: implicit acoustic waves

I Velocity and density in each fluid expressed as a function of Exner pressure, π

I Substituted into continuity equation to get Helmholtz equation for π



Rising Bubble, two fluids with different initial conditions

I No transfer terms, stabilisation or
sub-filter fluxes

I Two initially hydrostatically
balanced, stationary fluids

I Fluid 0 (stable fluid):
I θ0 = 300K

I σ0 =

{
0.5 circle near the ground
1 elsewhere

I Fluid 1 (buoyant fluid):

I θ1 =

{
300K+θ ′ in circle
300K elsewhere

I σ1 =

{
0.5 circle near the ground
0 elsewhere



Stabilisation
I If we ignore sub-filter scale fluxes, drag and mass transfers then these

equations are ill posed [Stewart and Wendroff, 1984]

Effective stabilisation options:

I Diffusion between fluids (diffuse σi) Weller and McIntyre [submitted]

σiρiSij =
Kσ

2
max

(
∇

2 (σjρj −σiρi) , 0
)

I Drag between fluids

Dij =
σj

ρi

CDρ

rc
|ui −uj|(ui −uj)

I Remove divergence local to just one fluid: Weller and McIntyre [submitted]

σiρiSij =
1
2

max(σjρj∇ ·uj −σiρi∇ ·ui, 0)

leads to a bounded transport equation for σi

I Diffusion of vertical velocity (a sub-filter-scale flux) (John Thuburn)
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Stabilisation by removing divergence local to one fluid

Continuity equation:

∂σiρi

∂ t
+∇ · (σiρiui) = ∑

j6=i
(σjρjSji −σiρiSij)

Transfer converging fluid:

σiρiSij =
1
2

max(σjρj∇ ·uj −σiρi∇ ·ui, 0)

leads to a bounded transport equation for σi

∂σiρi

∂ t
+ui ·∇(σiρi) =−1

2
ρ∇ ·u
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Stable treatment of transfer terms

The transfer terms can be large ∴

I Operator splitting to ensure boundedness
I Implicit treatment for stability ( σjρj

σiρi
Sji → ∞ as σiρi → 0)

I Conservation of mass, momentum and heat on transfer
I Kinetic energy diminishing on transfer

For example for θi:

Advection: θ
′
i = θ

n
i −∆t

{
(1−α)un

i ·∇θ
n
i +αu′

i ·∇θ
′
i
}

Transfers: θ
n+1
i = θ

′
i +∆t∑

j 6=i

σjρj

σiρi
Sji

(
θ

n+1
i −θ

n+1
j

)
Shorthand: Tij = ∆t σjρj

σiρi
Sji and re-arrange for i = 0,1,2: 1+T01 +T02 −T01 −T02

−T10 1+T10 +T12 −T12
−T20 −T21 1+T21 +T21

 θ
n+1
0

θ
n+1
1

θ
n+1
2

=

 θ ′
0

θ ′
1

θ ′
2
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Drag Between Fluids

From formula for drag on a rising
bubble

Dij = σj
CD

rc

ρ̄

ρi
|ui −uj|(ui −uj)

rc = bubble or plume radius.
As σi becomes small we need rc to
become small so that the drag is large
and the vanishing fluid moves with
the mean flow:

rc = max

(
rmin, rmax ∏

i
σi

)
(1)

Try CD = 1, rmin = 100m, rmax = 2000m



Diffusion Between Fluids

I Similar to convective entrainment
I Diffusion coefficient, Kσ , could be

chosen based on wind shear

σiρiSij =
Kσ

2
max

(
∇

2 (σjρj −σiρi) , 0
)

I Total mass is not diffused
I Will control oscillations in σ

I Try Kσ = 200 m2s−1



Transfer Converging Fluid

I Removes divergence that is local to
one fluid

I Equation for σi becomes bounded
I σiρiSij =

1
2 max(σjρj∇ ·uj −σiρi∇ ·ui, 0)

I No arbitrary coefficients



Mass Transfer based on Buoyancy Perturbations for
Convection

I Positive θ0 anomalies should be
transferred to fluid one

I Write this in terms of PDEs
I How do we diagnose this without

using a reference state?

S01 =

{
−Kθ

∇2θ0
θ0

when ∇2θ0 < 0

0 otherwise

S10 =

{
Kθ

∇2θ1
θ1

when ∇2θ1 > 0
0 otherwise

I Divergence transfer to stabilise
I Simulation using σ0 = 0 everywhere initially
I Warm anomaly initially in fluid 0
I Kθ = 106 m2s−1



Conclusions

I Stable numerical method for solving advective form multi-fluid equations
I Forms of stabilisation:

I Diffusion of mass between fluids
I Drag between fluids
I Transfer converging fluid - no parameters to set

I To mimic convective parameterisation, transfer based on ∇2θi
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