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Outline h NCAR

- Background information: NCAR release of CAM-SE in CESM2.0

 Motivation: SE method in some detail

* Quasi equal-area physics grid: CAM-SE-CSLAM
(upcoming CESM2.1 release)

* Lower resolution physics grid



For a long time the SE pectrar-etlemeny dynamical core in HOMME

(High-Order Methods Modeling Environment) was developed jOintly With DOE
(US Department of Energy)

(referred to as CAM-HOMME in this talk) \

HOMME no longer imported as an
external into CAM but part of CAM
(referred to as CAM-SE in this talk) &
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What changed (CAM-HOMME -> CAM-SE)? 0. Throughput
CAM®6 Aqua-Planet (incl. 1/0)
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What changed?1. Vertical coordinate & condensate loading
(CAM-HOMME -> CAM-SE)

 Dry-mass vertical coordinate (M@ is dry air mass per unit area):

d d
M 5 = Ak 2M{ + By oM

Pressure is a diagnostics:
k
d ¢
Pi+1/2=Pr + 8 AM} ) Z m;-)

Jj=1 teLan

where

‘[:all — {‘d‘, ‘WV‘, ‘Cl‘, ‘Ci‘, crnc, ‘SW‘} h NCAR
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What changed? 2. More comprehensive energy equation

(CAM-HOMME -> CAM-SE)
The total energy equation integrated over the global domain is also derived in Appendix
B: . The final equation is

n=1 M@
ff (aan(d) ) [m(f) (K +cOT + (I)s)] dAdn@® = 0. 61)
te Ly

Note that the energy terms (inside square brackets) in (61) separate into contributions
from each component of moist air

(555) O [ (k+eorea))]. ©)

(d)
on telan /

(OM(d)) (1 N m(wv)) [(K N céd)T N (Ds)] CAM physics version of (62)

on(d) Discrepancy ~ 0.5W/m?

Lauritzen et al. (2018)
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What changed?3. Reduced viscosity coefficients and
(CAM-HOMME -> CAM-SE) viscosity applied to dM-dM®¢) instead of dM
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Figure 6. Total kinetic energy spectrum of the horizontal winds at the 200 hPa level in CAM-HOMME and
CAM-SE at 1° horizontal resolution (N, = 30 and N,, = 4), computed as the mean spectra from 30 days of
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. 6-hourly instantaneous spectra. Black line is the x> reference scaling, where « is wave-number.
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What changed?3. Reduced viscosity coefficients and
(CAM-HOMME -> CAM-SE) viscosity applied to dM-dM®¢) instead of dM

CAM-SE, C80 topo, 3 year average ANN PRECT, no DM-DMAref visco CAM-SE, C80 topo, ANN PRECT, 15yrs ave
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Part | (motivation):
The spectral-element (SE) method
in some detail



The spectral-element method:
discretization grid
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GLL Quadrature Grid
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GLL=Gauss-Lobatto-Legendre
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The spectral-element method:
discretization grid

Panel 4 Element

For any arbitrary variable f (e.g., T, u, v, ...) one can approximate f as
a function of a tensor product of 1D basis tunctions on the 2D GLL grid:

f(x,y) = fijhi(x)hi(y;),

i

where f; ; is grid point values of f.

V4
/\ // \\ //\ GLL=Gauss-Lobatto-Legendre




Consider transect through 3 elements N NCAR
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Consider transect through 3 elements
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Continuity equation for Ap:

Ap* — Ap"
(hk, ”At P >=(hk,—V-ApV)+(hk,TV4Ap).

Temporal discretization: multi-stage Runge-Kutta time-stepping
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Consider transect through 3 elements [ NCAR
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@ Projection step
Ap™! = DSS (Ap*)

where DSS refers to Direct Stiffness Summation (also referred to as
assembly or inverse mass matrix step).

@ Choice of GLL quadrature based inner product and nodal basis
functions gives a diagonal mass matrix (Maday and Patera, 1987).



Consider transect through 3 elements [ NCAR
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The physics dynamics coupling paradigm ™ L0100

Assumptions inherent to the physical parameterizations require the state
passed by the dynamical core represent a ‘large-scale state’, for example,
in quasi-equilibrium-type convection schemes (Arakawa and Schubert 1974)




B NCAR

() [ o (]
The physics dynamics coupling paradigm
Finite-volume methods : dynamical core state = average state over a control volume
Finite-difference methods  : point value representative for dynamical core state - in the vicinity of point value

one can usually associate a volume with the grid-point that is representative of state.

For the regular latitude-longitude, cubed-sphere and icosahedral grids the distance between the grid-points is gradually
varying for finite-volume/finite-difference discretizations!

1]
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A unique aspect of the high-order quadrature rules is that the nodes within an element are
located at the roots of the basis set, which may be irregularly spaced

The physics dynamics coupling paradigm
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The physics dynamics coupling paradigm h NCAR

The resolved scales of motion are not determined by the distance between quadrature nodes,
but rather the degree of the polynomial basis in each element. The nodes may be viewed as
irregularly spaced samples of an underlying spectrally truncated state.

o O o © 0.8 /\
o—O *—0 \/ \
A

1

0.6

o—0 o—0 :4/\
[\

\ A
0 : -
o O o O | N
h ~30 ﬁ
-0.2 ]
Hﬁ A 05 0 05 1
Rog — Eg% GLL points
~0.83° ~1.34° ' g

~92km ~150km



If we apply convention physics dynamics coupling
paradigm to higher-order Galerkin method ...
then state passed to physics is the state at the quadrature
node values
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If we apply convention physics dynamics coupling N\ NCAR
paradigm to higher-order Galerkin method ...
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The physics forms a cloud on a boundary node




If we apply convention physics dynamics coupling N\ NCAR
paradigm to higher-order Galerkin method ...
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Note ... non-local effect by changing one node value

The physics forms a cloud on a boundary node
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If we apply convention physics dynamics coupling N\ NCAR
paradigm to higher-order Galerkin method ...

1.0
0.8
Qo
© 0.6
-'CT)' f
0.4
0.2
x-direction

Note ... non-local effect by changing one node value

Lets say the cloud instead forms at an interior node...
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If we apply convention physics dynamics coupling N\ NCAR
paradigm to higher-order Galerkin method ...

1.0

0.8

0.6

state

0.4

0.2

x-direction

Note ... non-local effect by changing one node value

Lets say the cloud instead forms at an interior node...




If we apply convention physics dynamics coupling N\ NCAR
paradigm to higher-order Galerkin method ...
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The irregular physical distance between nodes seems to have less bearing on the
solution, compared with whether one is, or is not on an element boundary




For an Aqua-planet simulation the climatology h NCAR
(of any variable) is zonal:

... so the climatology at any quadrature should be the same!
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For an Aqua-planet simulation the climatology h NCAR
(of any variable) is zonal:

... so the climatology at any quadrature should be the same!
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For an Aqua-planet simulation the climatology ‘ NCAR
(of any variable) is zonal: e

... sO the climatology at any quadrature should be the same!
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Figure: (left) Mean and (right) variance of low level temperature tendency (using CAM4 physics)



Held-Suarez simulation with real-world topography
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Figure: Mean OMEGA for CAM-SE at two model levels in the middle troposphere, in a Held-Suarez configuration outfitted
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-> using the conventional physics-dynamics
coupling paradigm leads to spurious
dependencies on location within element

Part II: Quasi-equal area physics grid
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Introducing an ~equal area physics grid
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Herrington et al. (MWR, revising)



Mapping u,v, T, and omega from dynamics grid (GLL) to
finite-volume grid:

1. conservation of scalar quantities such as mass (and dry thermal
energy),

2. for tracers; shape-preservation (monotonicity), i.e. the mapping
method must not introduce new extrema in the interpolated field, in
particular, negatives,

3. consistency, i.e. the mapping preserves a constant,
4. linear correlation preservation.

Other properties that may be important, but not pursued here, includes total
energy conservation and axial angular momentum.

Herrington et al. (MWR, revising)



Mapping u,v, T and tracer tendencies from finite-volume grid
to dynamics grid (GLL)

1. for tracers; mass tendency is conserved,

2. for tracers; in each tracer grid cell the mass tendency from physics must not exceed
tracer mass available in tracer grid cell (i.e. physics tendency will not drive tracer mixing
ratio negative on the GLL grid),

3. linear correlation preservation (at least for tracers),
4. consistency, i.e. the mapping preserves a constant tendency.

Other properties that may be important, but not pursued here, includes total energy
conservation (incl. components of total energy) and axial angular momentum
conservation.

Herrington et al. (MWR, revising)



@; To my knowledge there is no reversible map using the SE
Lagrange basis
(let alone shape-preserving and mass conservative)

Herrington et al. (MWR, revising)



To my knowledge there is no reversible map using the SE
Lagrange basis
(let alone shape-preserving and mass conservative)
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@; To my knowledge there is no reversible map using the SE
Lagrange basis
(let alone shape-preserving and mass conservative)

+ Herrington et al. (MWR, revising)



@; Use CSLAM for transport:
conservation, consistency & shape-preservation
in tracer physics-dynamics coupling
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Use CSLAM for transport:
conservation, consistency & shape-preservation
in tracer physics-dynamics coupling
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MARCH 2017 LAURITZEN ET AL. 833

CAM-SE-CSLAM: Consistent Coupling of a Conservative Semi-Lagrangian
Finite-Volume Method with Spectral Element Dynamics

PETER HIORT LAURITZEN

National Center for Atmospheric Research,” Boulder, Colorado
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Use CSLAM for transport:
conservation, consistency & shape-preservation
in tracer physics-dynamics coupling

Dry air mass fluxes computed from SE
method (derived by M. Taylor).

(b)

Local iteration problem generating an
upstream grid that spans the sphere
without cracks and overlaps and
‘matches’ SE fluxes to round-off

=> all CSLAM technology from
Lauritzen et al. (2010) can be
used and method is consistent,
shape-preserving, mass-conservative, ——
linear correlation preserving, multi-
tracer efficient, ....

FETERK I'TJORT LAURITZEN

National Center for Atmospheric Research,” Boulder, Colorado

Sandia National Laboratories, Albuguergue, New Mexico
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Aside: “Benefit” of using CSLAM for transport is
more accurate and faster (if enough tracers) transport
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CAM-SE, level=16, 1 degree = CAM-SE-CSLAM, level=16, 1 degree
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tor test” (Lauritezn et al., 2015)

ina

Initial condition

“Term

Aside: “Benefit” of using CSLAM for transport is
more accurate and faster (if enough tracers) transport
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Lauritzen et al., 2017
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“Terminator test” qauritezn etal., 2015)

Aside: “Benefit” of using CSLAM for transport is
more accurate and faster (if enough tracers) transport
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Lauritzen et al., 2017
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“Terminator test” qauritezn etal., 2015)

Aside: “Benefit” of using CSLAM for transport is
more accurate and faster (if enough tracers) transport
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Aside: “Benefit” of using CSLAM for transport is
more accurate and faster (if enough tracers) transport
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Aside: “Benefit” of using CSLAM for transport is
more accurate and faster (if enough tracers) transport

1 degree configuration (NE3ONP4NC3), 40 tracers
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Mapping u,v, T, and omega from dynamics
grid (GLL) to finite-volume (physics) grid

Temperature: Integrate basis function representation of dM*T over physics grid
control volumes

O'Qi\ (u,v): Evaluate basis function representation of
Conserves dry thermal contra-variant velocity components at physics
energy (dp*T) Br ey control volume centers (high-order “interpolation”)
Not total energy

conserving 07 L \.\ il

Not axial angular

momentum conserving 06 |- 4

0.5 - 4

| \//\

03@ @ ‘ @ @ @ ‘ ® @ @ ‘ ®
1 1.5 2 25 3 3.5 4

Herrington et al. (MWR, revising)



Mapping tendencies for u,v, and T from finite-volume (physics) grid to @

dynamics grid (GLL):

Cubic tensor-product interpolation in central angle coordinates
(high-order interpolation was found to be important!)

Preserves constant

Not total energy
conserving

Not thermal energy
conserving

(dM*T)

Not axial angular
momentum conserving

Reference y-coordinate

Mapping errors lead to ~0.0025 W/m?
spurious total energy sink

For comparison: CAM-SE conserves
total energy to ~0.1W/m?

(for ~1 degree horizontal resolution)
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Herrington et al. (MWR, revising)



FT -

Temperature tendency

gh-order interpolation was found to be important

—4g-05  -2e-05

(7)1dvars (13)2d vars (26)3d vars CAM4 Aqua_planet Simulation
Dim: NETITH Min: Current: Max: Units:

Scan: time 76.1 1-Apr-1989 0¢ 76.1 days since 1€

lev 3.64347 912.645 992.556 hPa
@0 [\ interp_dir/cslam-cam5-ape.ave.nc.bilinear_to_nlon360xnlat180.nc

CAM-SE-CSLAM with linear interpolation from phys to dyn: 5 month average

NCAR‘ National Center for Atmospheric Research
UCAR | Climate & Global Dynamics




High-order interpolation was found to be important

CAM4 Aqua-planet simulation

(TOTAL PRECIPITATION RATE)

PRECT

CAM4 SE-CSLAM-physgrid: linear interpolation phys to dyn: 5 month average

NCAR‘ National Center for Atmospheric Researc
UCAR | Climate & Global Dynamics



High-order interpolation was found to be important

| CAM4 Aqua-planet simulation
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ﬁ CAM-SE-CSLAM with cubic tensor product interpolation from phys to dyn:

18 month average

NCAR ‘ National Center for Atmospheric Research
UCAR | Climate & Global Dynamics




High-order interpolation was found to be important

CAM4 Aqua-planet simulation
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CAM-SE-CSLAM with cubic tensor product interpolation from phys to dyn:
18 month average

NCAR ‘ National Center for Atmospheric Research
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Results - CAM4 Aqua-planets BNCAR

CAM-SE-CSLAM

1005 0T T
10" | 10" |
C = L
ke Y !
© (=) 107 [ 10%
= o [ i
g g 10° F 107 F
@ £ [ [
IC 2 10° 107 F I
Q = - - ®
g -% 10'5 10-5 g.
g ¢ L)
g o 10 10® g
S ]
O
107 107 2
1O-e'l....l....l....|....|... 1O.za'....l....l........ <
0.0 -0.5 -1.0 -1.5 -2.0 -2.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 g
o (Pa/s) o (Pa/s) (:D
<.
State the physics ‘see’ is now independent of location within element! 2



CAM-SE-CSLAM

Results - CAM4 Aq ua-planets
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That said, the zonal means look very similar ...
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Precipitation Rate (mm/day)




B NCAR

Held-Suarez simulation with real-world topography

ne30np4-on-np4 ne30pg3-on-np4 ne30pg3-on-pg3

-142 -130 -118 -106 -94 -82 -70 -58 -46 -34 -22 -10 2 14 26 38 50 62 74 86 98 110 122 134 146

o (hPa/day)
Figure: Mean OMEGA for CAM-SE (left), CAM-SE-CSLAM but on GLL grid and CAM-SE-CSLAM grid.
The data are contoured according to a ‘cell fill” approach.
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Held-Suarez simulation with real-world topography
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Figure: Mean OMEGA for CAM-SE (left), CAM-SE-CSLAM but on GLL grid and CAM-SE-CSLAM grid.
The data are contoured according to a ‘cell fill" approach. Herrington et al. (MWR, revising)
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CAM-FV, ANN PRECT

Large-scale (stable) precipitation rate (liq + ice) mm/day
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B NCAR
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CAM-SE, C60 topo, ANN PRECT, 16.5yrs ave

Large-scale (stable) precipitation rate (liq + ice) mm/day
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CAM-SE, C60 topo, ANN PRECT, 16.5yrs ave

Large-scale (stable) precipitation rate (liq + ice) mm/day
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CAM-SE-CSLAM, C60 topo, ANN PRECT, 16.5yrs ave

Large-scale (stable) precipitation rate (liq + ice) mm/day
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AMIP simulation
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CAM-SE minus CSLAM, C60 topo, ANN PRECT, 16.5yrs ave

Large-scale (stable) precipitation rate (liq + ice) mm/day
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Part I1I: Lower resolution physics grid



CAM-SE-CSLAM: varying physics grid resolution
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Lauritzen et al. (2018)

core-hours/simulated year

Computational cost of CAM6 Aguaplanet [Cheyenne]
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CAM for the 1° horizontal resolution Aquaplanet simulation on Cheyenne (see text for more details).

Figure 12. The cost in core-hours per simulated-year is provided for several different sub-components of
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Mapping tracer tendencies from pg2 physics grid to pg3 CSLAM grid

1. for tracers; mass tendency is conserved,

2. for tracers; in each tracer grid cell the mass tendency from physics must not exceed
tracer mass available in tracer grid cell (i.e. physics tendency will not drive tracer mixing
ratio negative),

3. linear correlation preservation,

4. consistency, i.e. the mapping preserves a constant tendency.

Other properties that may be important, but not pursued here, includes total energy '/
conservation (incl. components of total energy) and axial angular momentum

conservation.
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Requirement for conservation: In each tracer grid cell the mass tendency
from physics must not exceed tracer mass available in tracer grid cell

(a.) m,(esm) (b.) m, (c.) £, (d.) £, (e.) my(eslem) - f(eslom) A g

Finite-volume Area average

Physics computes . Leads to negative
y P tendencies back to g

(CSLAM) tendencies mixing ratios ®
mapping CSLAM grid .

Herrington et al. (in prep.)



Requirement for conservation: In each tracer grid cell the mass tendency
from physics must not exceed tracer mass available in tracer grid cell

(a.) ml(cslam) (b) mk(Pg) (C) fk(Pg) (d) fk[ (e) ml(CSZam) _/_fl(CSlam)At
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Finite-volume Scale tendency Conserves mass,

Physics computes . . :
' with mass available correlations,
tendencies

(CSLAM)
mapping in overlap area consistent, ....

Herrington et al. (in prep.)



Low versus high order mapping

GI’id name A.Xd_\ n Atd}; n A.xPh}; 5 Atphys

¥ mmm ne30pg2 111.2km  300s 166.8km  1800s
=== ne30pg2 111.2km  300s 166.8km  1800s
=== ne30pg3 111.2km  300s 111.2km  1800s

*low order mapping ( bilinear in pg2->dyn, PCoM in CSLAM<->pg2 )
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Mean climatg of A’q‘ua-planet simulations
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Herrington et al. (in prep.)
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Fix Dynamics, change physics grid resolution

(but, same topography smoothing)
ne30pg2-C092topo ne30pg3-C092topo ne30pg3-C092topo 10X-nu_div
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Herrington et al. (in prep.)



Fix Dynamics, change physics grid resolution

(but, same topography smoothing)
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Herrington et al. (in prep.)



I Remarks
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« CAM-SE-CSLAM (pg3) will be released with CESM2.1

(scheduled for early Fall)

* FV3 and MPAS are being integrated into the CESM

CAM-FV3

CAM-MPAS

CAM-SE(CSLAM)
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4.5 year average using CAM6 physics (QPC6 compset)
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Lauritzen et al. (2018)



