

On the discretization of vertical diffusion in the turbulent surface and planetary boundary layers

F. Lemarié – Inria (EPC AIRSEA), Laboratoire Jean Kuntzmann, Grenoble, France

In collaboration with: E. Blayo & S. Théry (UGA), C. Pelletier (UCLouvain), F. Nazari (Inria)

Context: representation of mixing in PBLs

▷ Reynolds averaging ($\phi = \langle \phi \rangle + \phi'$) $\partial_t \langle \phi \rangle = \ldots + \operatorname{div}(\langle \mathbf{u}' \phi' \rangle) + \ldots$

- Diffusive approach for "local" mixing (K-theory)
 - $\Rightarrow\,$ Boundary layer approximations: horiz. homogeneity and eddy diffusion

 $\langle w'\phi' \rangle = -K\partial_z \langle \phi \rangle \longrightarrow \partial_t \langle \phi \rangle = \ldots + \partial_z (K\partial_z \langle \phi \rangle) + \ldots$

- \rightarrow Down-gradient fluxes
- \rightarrow Turbulence acts as a "mixing"
- Mass flux approach for "non-local" mixing (e.g. Chatfield & Brost, 1987; Siebesma, 2007)

 $\left\langle w'\phi'\right\rangle = -K\partial_z\left\langle\phi\right\rangle + \alpha w_u(\phi_u - \left\langle\phi\right\rangle) \quad \rightarrow \quad \partial_t\left\langle\phi\right\rangle = \partial_z(K\partial_z\left\langle\phi\right\rangle) - \partial_z(\alpha w_u\left\langle\phi\right\rangle) + \dots$

 \Rightarrow advection-diffusion operator to parametrize unresolved scales in PBLs and beyond (e.g. internal wave breaking or convective adjustment)

Context: representation of mixing in PBLs

Standard schemes to provide K:

- 0-equation: algebraic computation of the eddy parameters from bulk properties
- 1-equation: prog. eqn for turbulent kinetic energy (TKE) + diagnostic mixing length
- 2-equations: prog. eqn for TKE and for a "generic" length scale (ε, ω, ...)

The resulting turbulent viscosity/diffusivity K

- \rightarrow strongly varies spatially (internal & boundary layers), i.e. large values of $\frac{h(\partial_z K)}{K}$
- → depends nonlinearly on model variables

 \rightarrow induces stiffness i.e. large vertical parabolic Courant numbers $\sigma^{(2)} = \frac{K\Delta t}{L^2}$

Usual approach (e.g. WRF, LMDZ, all oceanic models):

use of (semi)-implicit temporal schemes with 2nd-order FD discretization

Context: standard approach

- What could be wrong with second-order scheme in space ?
 - Nothing . . . if pure diffusion (i.e. with constant K) is considered

$$\partial_z \left(K \partial_z \phi \right)_k^{(C2)} = \partial_z (K \partial_z \phi)_k + \frac{h^2}{12} \left\{ K \partial_z^4 \phi \right\} + \mathcal{O}(\Delta z^4)$$

• but with
$$\operatorname{Pe}^{(n)} = \frac{h^n \partial_x^n K}{K} \neq 0, \ n \ge 1$$

 $\partial_z \left(K \partial_z \phi \right)_k^{(C2)} = \partial_z (K \partial_z \phi)_k + \frac{1}{24} \partial_z \left(K \left[\operatorname{Pe}^{(2)} \partial_z \phi + 2\Delta z \operatorname{Pe}^{(1)} \partial_z^2 \phi + 2\Delta z^2 \partial_z^3 \phi \right] \right) + \mathcal{O}(\Delta z^4)$

- What could be wrong with (semi)-implicit scheme in time ?
 - Lack of monotonic damping (e.g. Manfredi & Ottaviani, 1999; Wood et al., 2007) possibly leaving noise uncontrolled (+ trigger conv. adjust.)
 - Inexact damping for large $\sigma^{(2)}$
 - $\mathcal{O}(\Delta t)$ errors in coupling with physical parameterizations

Impact on model solutions

Single-column exp. (Wind-induced deepening of BL)

Maps of K/K^{num} from oceanic realistic simulations

- *K*^{num} is the diffusivity in the continuous equation with same damping as the numerical damping
- $K/K^{num} \gg 1 \Rightarrow$ the damping seen by the model is smaller than the theoretical damping.

•
$$\sigma^{(2)} = \overline{\sigma^{\text{mld}}}, \theta = \frac{2\pi}{N_{\text{mld}}}$$

F. Lemarié – PBL mixing discretization

Objectives

- Have a better control of numerical sources of error independently from the physical principles of the subgrid scheme
- \triangleright Consistency between the parameterizations and the resolved fluid dynamics (for bottom boundary condition & K(z) computation)

Outline

- 1. Spatial discretization
- 2. Treatment of the bottom boundary condition (MO consistency)
- 3. Combination with time discretization
- 4. Combination with subgrid closure schemes

Spatial discretization

F. Lemarié – PBL mixing discretization

Objectives & motivations

Constraints

- limit ourselves to tridiagonal linear problems
- · possibility to have a joint treatment of vertical advection and diffusion
- allow a finite-volume interpretation

Possible alternatives

- Exponential Compact scheme (e.g.McKinnon & Johnson, 1991; Tian & Dai, 2007)
 - \rightarrow Specifically designed for accuracy with large Peclet numbers
- Padé compact finite volume discretization

$$\partial_z (K \partial_z \phi) = \frac{K_{k+1/2} d_{k+1/2} - K_{k-1/2} d_{k-1/2}}{h_k}, \qquad d_{k+1/2} = (\partial_z \phi)_{k+1/2}$$

for standard discretization: $d_{k+1/2} = (\phi_{k+1} - \phi_k)/h$ (h : vertical layers thickness)

Parabolic splines reconstruction

Suppose a given set of $\{\overline{\phi}_k, k=1,\ldots,N\}$ and assume a subgrid parabolic reconstruction

$$\phi(\xi) = a\xi^2 + b\xi + c, \qquad \xi \in \left] -\frac{h_k}{2}, \frac{h_k}{2} \right[$$

under the constraints

•
$$\frac{1}{h_k} \int_{-\frac{h_k}{2}}^{\frac{h_k}{2}} \phi(\xi) d\xi = \overline{\phi}_k$$

•
$$\partial_z \phi(+h_k/2) = d_{k+1/2}, \ \partial_z \phi(-h_k/2) = d_{k-1/2}$$

+ Impose the continuity of ϕ at cell interfaces :

$$\frac{1}{6}d_{k+3/2} + \frac{2}{3}d_{k+1/2} + \frac{1}{6}d_{k-1/2} = \frac{\overline{\phi}_{k+1} - \overline{\phi}_k}{h}$$

- necessitates inversion of an implicit linear system of equations
- compact accuracy (4th-order for advection, 2nd for diffusion)
- Widely used for vertical advection in oceanic models

Compact Padé Finite Volume methods

Lele, 1992; Kobayashi, 1999

Unknowns : derivatives $d_{k+\frac{1}{2}}$ on cell interfaces, for $m,n\in\mathcal{N}$

$$\sum_{i=1}^{m} \alpha_i \boldsymbol{d_{k+\frac{1}{2}-i}} + \boldsymbol{d_{k+\frac{1}{2}}} + \sum_{i=1}^{m} \alpha_i \boldsymbol{d_{k+\frac{1}{2}+i}} = \frac{1}{h} \left(\sum_{j=1}^{n} \gamma_j \overline{\phi}_{k+j} - \sum_{j=1}^{n} \gamma_j \overline{\phi}_{k-j+1} \right)$$

• For
$$(m,n) = (1,1): \alpha_1 d_{k-\frac{1}{2}} + d_{k+\frac{1}{2}} + \alpha_1 d_{k+\frac{3}{2}} = \gamma_1 \left(\frac{\overline{\phi}_{k+1} - \overline{\phi}_k}{h}\right)$$

 $(\alpha_1, \gamma_1) = \left(\frac{1}{10}, \frac{6}{5}\right) \rightarrow \text{4th-order discretization of } d_{k+\frac{1}{2}} \text{ (for } K = \text{cste)}$
 $(\alpha_1, \gamma_1) = \left(\frac{1}{4}, \frac{3}{2}\right) \rightarrow \text{equivalent to parabolic splines reconstruction.}$

- · Can be reinterpreted in terms of subgrid reconstruction as parabolic splines
- Flexibility provided by α and γ parameters

Effective viscosity/diffusivity

- At this point relevant only for internal layers
 → not directly applicable to turbulent boundary layers
- Illustration : stationary problem

$$\begin{cases} \partial_z \left(K(z)\partial_z \phi \right) &=& \frac{\partial_z \mathcal{R}}{\rho C_p} \\ \phi(0) &=& \phi_{\text{bot}} \\ \phi\left(\frac{19h_{\text{bl}}}{20}\right) &=& \phi_{\text{top}} \end{cases}$$

with

1

$$K(z) = \kappa \phi_{\star} \frac{z}{h_{\rm bl}} (h_{\rm bl} - z) + K_{\rm mol}$$
$$\mathcal{R}(z) = \mathcal{R}_0 \left(\alpha e^{-z/\zeta_0} + (1 - \alpha) e^{-z/\zeta_1} \right)$$

Treatment of the bottom boundary condition (MO consistency)

Treatment of boundary cells (neutral case)

Treatment of boundary cells with Parabolic splines

2nd-order polynomial subgrid reconstruction for
$$z \in]-\frac{h_k}{2}, \frac{h_k}{2}[:]$$

$$\phi(z) = \overline{\phi}_k + \left(\frac{d_{k+1/2} + d_{k-1/2}}{2}\right)z + \frac{d_{k+1/2} - d_{k-1/2}}{2h_k} \left(z^2 - \frac{h_k}{12}\right)$$
Usual treatment of boundary cell (with Dirichlet B.C.)

$$\phi\left(-\frac{h_1}{2}\right) = \overline{\phi}_1 - \frac{h_1}{3}d_{1/2} - \frac{h_1}{6}d_{3/2} = \chi_{\rm sfc} \quad \rightarrow \frac{1}{3}d_{1/2} + \frac{1}{6}d_{3/2} = \frac{\overline{\phi}_1 - \chi_{\rm sfc}}{h_1}$$

Alternative treatment

$$\phi(z) = (\phi_{3/2} - \chi_{\rm sfc}) \left(\frac{\ln\left(1 + \frac{z}{z_{\star}}\right)}{\ln\left(1 + \frac{h_1}{z_{\star}}\right)} \right) + \chi_{\rm sfc} = d_{3/2}(h_1 + z^{\star}) \ln\left(1 + \frac{z}{z_{\star}}\right) + \chi_{\rm sfc}$$

$$\rightarrow d_{1/2} = d_{3/2} \left(1 + \frac{h}{z_{\star}} \right)$$
 (consistant with constant flux layer)
$$\rightarrow \frac{1}{6} d_{5/2} + \left[\frac{1}{3} + \left(1 + \frac{z_{\star}}{h} \right) \ln \left(1 + \frac{h}{z_{\star}} \right) \right] d_{3/2} = \frac{\overline{\phi}_2 - \chi_{\text{sfc}}}{h}$$
 (impose regularity)

Treatment of boundary cells with Parabolic splines

Asymptotics :

Resolved case (combining the first 2 lines of the matrix)

$$\frac{1}{6}d_{5/2} + \frac{5}{6}d_{3/2} + \frac{1}{2}d_{1/2} = \frac{\overline{\phi}_2 - \chi_{\rm sfc}}{h}$$

Unresolved case (for $h \rightarrow 0$)

$$\frac{\frac{1}{6}d_{5/2} + \underbrace{\left(\frac{1}{3} + \left[1 + \frac{h}{2z_{\star}}\right]\right)d_{3/2}}_{\frac{5}{6}d_{3/2} + \frac{1}{2}d_{1/2}} = \frac{\overline{\phi}_2 - \chi_{\rm sfc}}{h}$$

Smooth transition between the unresolved and the resolved limit.

A numerical example (with $z_{\star} = K_{mol}/(\kappa |\phi_{\star}|)$)

Combination with time discretization

F. Lemarié - PBL mixing discretization

Combination with implicit time discretization

Combine Padé-type schemes with implicit Euler :

$$\begin{cases}
\alpha d_{k+3/2}^{n+1} + d_{k+1/2}^{n+1} + \alpha d_{k-1/2}^{n+1} = \gamma \frac{\overline{\phi}_{k+1}^{n+1} - \overline{\phi}_{k}^{n+1}}{h} \\
\overline{\phi}_{k}^{n+1} = \overline{\phi}_{k}^{n} + \frac{\Delta t}{h} \left[K_{k+1/2} d_{k+1/2}^{n+1} - K_{k-1/2} d_{k-1/2}^{n+1} \right] + \Delta t \operatorname{rhs}_{k} \\
\overline{\phi}_{k+1}^{n+1} = \overline{\phi}_{k+1}^{n} + \frac{\Delta t}{h} \left[K_{k+3/2} d_{k+3/2}^{n+1} - K_{k+1/2} d_{k+1/2}^{n+1} \right] + \Delta t \operatorname{rhs}_{k+1}
\end{cases}$$

to end up with the following single tridiagonal problem

$$\begin{pmatrix} \frac{\alpha}{\gamma} - \frac{K_{k+3/2}\Delta t}{h^2} \end{pmatrix} d_{k+3/2}^{n+1} + \begin{pmatrix} \frac{1}{\gamma} + 2\frac{K_{k+1/2}\Delta t}{h^2} \end{pmatrix} d_{k+1/2}^{n+1} + \begin{pmatrix} \frac{\alpha}{\gamma} - \frac{K_{k-1/2}\Delta t}{h^2} \end{pmatrix} d_{k-1/2}^{n+1}$$

$$= \frac{\overline{\phi}_{k+1}^n - \overline{\phi}_k^n}{h} + \frac{\Delta t}{h} (\operatorname{rhs}_{k+1} - \operatorname{rhs}_k)$$

- easy to generalize for non-constant grid-size
- The tridiagonal solve provides the flux and not $\overline{\phi}$

Relevant properties for a well-behaved numerical solution

(e.g. Manfredi & Ottaviani (1999); Wood et al. (2007))

- Unconditional stability
- Monotonic damping (damping increases with increasing wavenumber, i.e. $\partial_{\theta} \mathcal{A} < 0$)
- Non-oscillatory (i.e. $A \ge 0$)
- Proper control of grid-scale noise $\forall \sigma^{(2)}$
- → Convergence & stability are often not sufficient

Existing alternatives :

- 1. Crank-Nicolson : ill-behaved for large time-steps \rightarrow short wave-lengths not damped efficiently
- 2. 2nd-order "Padé" 2-step scheme (e.g Manfredi & Ottaviani 1999; Wood et al. 2007) :

$$\begin{array}{rcl} & (1+a(K\Delta t)\widetilde{k}^2)\phi^{\star} &=& (1+b(K\Delta t)\widetilde{k}^2)\phi^n & a &=& 1+\sqrt{2}, \\ & (1+b(K\Delta t)\widetilde{k}^2)\phi^{n+1} &=& \phi^{\star} & b &=& 1+1/\sqrt{2} \end{array}$$

3. Diagonally-implicit RK (e.g Nazari et al., (2013,2014))

$$\begin{cases} \phi^{(1)} = \phi^{n} + (K\Delta t)\tilde{k}^{2} a_{11}\phi^{(1)} \\ \phi^{(2)} = \phi^{n} + (K\Delta t)\tilde{k}^{2}(a_{21}\phi^{(1)} + a_{22}\phi^{(2)}) \\ \phi^{(3)} = \phi^{n} + (K\Delta t)\tilde{k}^{2}(a_{31}\phi^{(1)} + a_{32}\phi^{(2)} + a_{33}\phi^{(3)}) \\ \phi^{n+1} = \phi^{n} + (K\Delta t)\tilde{k}^{2}(b_{1}\phi^{(1)} + b_{2}\phi^{(2)} + b_{3}\phi^{(3)}) \end{cases}$$

Existing alternatives :

- 2. 2nd-order two-step scheme
- 3. Diagonally-implicit RK

· Preserves qualitatively the features of the original equation

Temporal discretization with FV Padé scheme

Illustration with implicit Euler scheme :

$$\mathcal{A}(\sigma^{(2)}, \theta) = \frac{1 + 2\alpha \cos \theta}{1 + 2\alpha \cos \theta + 4\gamma \sigma^{(2)} (\sin \frac{\theta}{2})^2}$$

- 2nd-order accurate in space : $\alpha = \frac{\gamma 1}{2}$
- $\forall \gamma \neq 0, \, \partial_{\theta} \mathcal{A} < 0 \, \rightarrow \, \text{non-oscillatory if } \mathcal{A}(\sigma^{(2)}, \pi) \geq 0$
- Two possibilities :

•
$$\mathcal{A}(\sigma^{(2)},\pi) = 0 \rightarrow \gamma = 2$$

- 2nd-order in time, 4th-order in space ~~ $\gamma = \frac{6}{5-6\sigma^{(2)}}$

Implicit Euler + C2

$$\mathcal{A} = \frac{1}{1 + 4\sigma^{(2)}\sin(\theta/2)^2}$$

$$\mathcal{A} = \frac{1}{1 + 4\sigma^{(2)}\tan(\theta/2)^2}$$

$$\mathcal{A} = \frac{1}{1 + 4\sigma^{(2)}\tan(\theta/2)^2}$$

 \rightarrow Padé FV scheme provides flexibility in the spatial discretization to counteract time discretization errors.

31

ò

 $\frac{\pi}{4}$

 $\theta = k h$

2h

Combination with subgrid closure schemes

F. Lemarié - PBL mixing discretization

Mathematical stability of closure models (e.g. Deleersnijder et al., 2009)

• An example : analogy with a local Ri-dependent model

$$\partial_t \phi = \partial_z \left(K(z) \partial_z \phi \right), \qquad K(z) = (\partial_z \phi)^{-2}$$

▷ $K(z) > 0 \rightarrow \phi$ remains bounded ▷ Original equation can be reexpressed as

$$\partial_t \left(\partial_z \phi \right) = \partial_z \left(\widetilde{K}(z) \partial_z \left(\partial_z \phi \right) \right), \qquad \widetilde{K}(z) = -(\partial_z \phi)^{-2}$$

 \rightarrow the gradient can grow unbounded

- Numerical test :
$$\phi(z,t=0)=z,\,\phi(z=-1,t)=-1,\,\phi(z=1,t)=1$$

Mathematical stability of closure models (e.g. Deleersnijder et al., 2009)

• An example : analogy with a local Ri-dependent model

 $\partial_t \phi = \partial_z \left(K(z) \partial_z \phi \right), \qquad K(z) = (\partial_z \phi)^{-2}$

▷ $K(z) > 0 \rightarrow \phi$ remains bounded ▷ Original equation can be reexpressed as

$$\partial_t \left(\partial_z \phi\right) = \partial_z \left(\widetilde{K}(z) \partial_z \left(\partial_z \phi\right)\right), \qquad \widetilde{K}(z) = -(\partial_z \phi)^{-2}$$

 \rightarrow the gradient can grow unbounded

 Ill-behaved solution due to the continuous formulation of the closure model and not to the details of its numerical discretisation

 \rightarrow 0-equation closures are hard to study since it can change the diffusive nature of the equation

 More generally, spurious oscillations generally noticed are of a mathematical or a numerical nature ?

Energetic consistency – mixing terms vs turbulent closure

For X-equation closures with X > 0 a global energy budget can be derived

$$\begin{array}{rcl} \partial_t u - \partial_z \left(K_m \partial_z u \right) &=& 0 \\ \partial_t b - \partial_z \left(K_s \partial_z b \right) &=& 0 \end{array} \xrightarrow{} \begin{array}{rcl} \partial_t \mathbf{KE} - \partial_z \left(K_m \partial_z \mathbf{KE} \right) &=& -K_m \left(\partial_z u \right)^2 &=& -\mathbf{E} \\ \partial_t \mathbf{PE} - \partial_z \left((-z) K_s \partial_z b \right) &=& K_s \quad \partial_z b &=& -\mathbf{E} \end{array}$$

 $\partial_t \text{TKE} - \partial_z \left(K_e \partial_z \text{TKE} \right) = P + B - \varepsilon$

Energy budget in a water column (ignoring the contribution of B.C.) :

$$E = \int_{z_{\rm bot}}^{z_{\rm top}} (\text{KE} + \text{PE} + \text{TKE}) dz \quad \rightarrow \quad \partial_t E = -\int_{z_{\rm bot}}^{z_{\rm top}} \varepsilon dz$$

 The discrete counterpart of it tells you exactly how to discretize forcing terms in the TKE equation

Wind-induced deepening of boundary layer

Kato & Phillips : On the penetration of a turbulent layer into stratified fluid, J. Fluid Mech., 1969 Price : On the scaling of stress-driven entrainment experiments, J. Fluid Mech., 1979

- ▷ Single column experiments with 0-equation closure (KPP, Large et al., 1994)
 - Use subgrid reconstruction to detect critical Ri-number
 - "Energy consistent" discretization of the Richardson number

Summary

- Padé FV approach provides a good combination of simplicity and flexibility to handle diffusive terms with minimal changes in existing codes
 - Allows a good combination with surface layer param. and existing time-stepping
 - Provides degrees of freedom to mitigate numerical errors in time or to impose desired properties
- Simple single column test (Kato & Phillips) indicates a reduced sensitivity to numerical parameters

Perspectives

- Nonlinear stability (inputs on known pathological behaviors are welcome)
- Bottom boundary condition
 - Neutral case \rightarrow stratified case
- Single column tests & global ocean simulation within NEMO
- Add representation of oceanic molecular sublayer + MO layer in the top most oceanic grid box for OA coupling purposes (e.g. Zeng & Beljaars, 2005)