Representation of air-sea interactions on an idealised coupled atmosphere-ocean model with focus on the Western Baltic Sea

3rd Workshop on Physics Dynamics Coupling – PDC18

ECMWF, Reading (UK)

Tobias Bauer (TROPOS), Olaf Hellmuth (TROPOS) ⊠ tobias.bauer@tropos.de

July 11, 2018

Leibniz Institute for Tropospheric Research

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000	00
Contents			
CONCINS			

- 1 Coastal upwelling in Western Baltic Sea
- 2 Air-sea interactions: ICON & GETM
- **③** Idealised atmosphere-ocean model
- **4** Conclusions & Outlook

Motivation:	coastal	upwelling	
000			

Conclusions & Outlook

Coastal upwelling – coast of Poland: May 25 – Jun 08, 2008

5 10 15 2079 Sea surface temperature western Baltic Sea – May/June 2008

Wind map of central Europe at 6am UTC

Idealised model

What happens at the water surface?

Linking of atmosphere and ocean via radiation transfer of heat and momentum and gas exchange, i.e.

- Waves and currents in the ocean caused by wind
- Dissolution of greenhouse gases like carbon dioxide into the ocean
- Heat absorption (due to radiation) and emission by the

ocean

Idealised model

Conclusions & Outlook

How are atmosphere and ocean models online coupled?

How are atmosphere and ocean models online coupled?

How are atmosphere and ocean models online coupled?

- Which variables will be exchanged?
- Which time intervals will be suitable for a data exchange?
- Which interpolation method will best fit for a data exchange?

Idealised model

Conclusions & Outlook

How are atmosphere and ocean models online coupled?

- Which variables will be exchanged?
- Which time intervals will be suitable for a data exchange?
- Which interpolation method will best fit for a data exchange?

Motivation:	coastal	upwelling

Idealised model

Conclusions & Outlook

Coupling scheme for ICON and GETM

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
	0000	00000000000000	00

Coupling scheme for ICON and GETM

- Local mass conservation by flux-form for continuity equation Zängl et al., 2015
- Compressible non-hydrostatic set of equations on global domains

ICON

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
	0000	000000000000000000000000000000000000000	00

Coupling scheme for ICON and GETM

- Local mass conservation by flux-form for continuity equation Zängl et al., 2015
- Compressible non-hydrostatic set of equations on global domains

ICON

Drying and flooding processes for coastal and estuarine domains

 Hydrostatic set of equations with Boussinesq approximation and eddy viscosity assumption
 Burchard et al., 2004

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
	0000	00000000000000	00

Coupling scheme for ICON and GETM

- Local mass conservation by flux-form for continuity equation Zängl et al., 2015
- Compressible non-hydrostatic set of equations on global domains

- Data exchange: momentum and surface heat flux, evaporation, etc.
- Horizontal interpolation of data at air-sea interface
- Drying and flooding processes for coastal and estuarine domains
- Hydrostatic set of equations with Boussinesq approximation and eddy viscosity assumption

ICON

ESMF

GETM

data

data

Motivation: coastal upwelling Air-sea interactions: ICON & GETM Idealised model Conclusions & Outlook

Air-sea interactions: ICON & GETM – uncoupled

potential temperature

|v|: wind

θ

GETM

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model
000	0000	000000000000

Realisation of air-sea interactions in ICON & GETM

ICON:

Momentum:

$$\begin{aligned} \tau_s^{\mathsf{x}} &= -\rho \cdot C_m^d \cdot |\mathbf{v}| \cdot u \\ \tau_s^{\mathsf{y}} &= -\rho \cdot C_m^d \cdot |\mathbf{v}| \cdot v \end{aligned}$$

Heat:

 $Q = Q_s + Q_l + Q_b + Q_{SW}$

GETM:

Heat:

Momentum:

 $\begin{aligned} \tau_s^{\mathsf{x}} &= \rho \cdot C_m^d \cdot |\mathbf{v}| \cdot u \\ \tau_s^{\mathsf{y}} &= \rho \cdot C_m^d \cdot |\mathbf{v}| \cdot v \\ Q &= Q_s + Q_l + Q_b \end{aligned}$

Idealised model

Conclusions & Outlook

Realisation of air-sea interactions in ICON & GETM

ICON:

Momentum:

$$\begin{aligned} \tau_s^{\mathsf{x}} &= -\rho \cdot C_m^d \cdot |\mathbf{v}| \cdot u \\ \tau_s^{\mathsf{y}} &= -\rho \cdot C_m^d \cdot |\mathbf{v}| \cdot v \end{aligned}$$

No mass exchange with ocean via precipitation and evaporation due to exact local mass conservation.

Heat:

 $Q = Q_s + Q_l + Q_b + Q_{SW}$

GETM:

Momentum:

Heat:

$$\begin{aligned} \tau_s^{\mathsf{x}} &= \rho \cdot C_m^d \cdot |\mathbf{v}| \cdot u \\ \tau_s^{\mathsf{y}} &= \rho \cdot C_m^d \cdot |\mathbf{v}| \cdot v \\ Q &= Q_s + Q_l + Q_b \end{aligned}$$

Considering of precipitation and evaporation for salinity flux.

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Air-sea interactions: ICON & GETM - coupled

Q_l :	sensible/latent heat flux
N:	solar short wave radia-
	tive flux
v:	terrestrial long wave ra-
	diative flux
	long wave net radiative
	flux
	shear stress
	evaporation
	precipitation
r:	air temperature
Γ:	sea surface temperature
	potential temperature
$/v_{10}:$	u/v-wind at 10 m
	wind TROPOS
:	air pressure

Idealised atmosphere-ocean model: objectives

- Development of idealised model for
 - 1D: Studying mass, momentum and energy coupling between atmosphere and ocean with a water/air column model system
 - 2D: Constructing an idealised coupled model system with straight coast and upwelling favourable winds
 - 3D: Fully coupled idealised atmosphere-ocean experiment (Baltic Sea)

Idealised atmosphere-ocean model: objectives

- Development of idealised model for
 - 1D: Studying mass, momentum and energy coupling between atmosphere and ocean with a water/air column model system
 - 2D: Constructing an idealised coupled model system with straight coast and upwelling favourable winds
 - 3D: Fully coupled idealised atmosphere-ocean experiment (Baltic Sea)
- Utilising different coupling strategies
 - a) Online coupling with coupler (e.g. ESMF)
 - b) Derivation and application of numerical methods with multirate approaches for atmosphere-ocean models

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	0000000000000	00

Idealised atmosphere-ocean model: properties

- Mass and momentum conservation and energy consistency
- Unified parameterisation of air-sea interactions
- Applying parameterisation for radiative energy intake in ocean
- Utilising turbulence closure scheme for atmosphere and ocean
- Possible different discretisation for atmosphere and ocean, i.e. horizontal interpolation at air-sea interface as part of discretisation

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	0000000000000	00

Idealised atmosphere-ocean model: properties

- Mass and momentum conservation and energy consistency
- Unified parameterisation of air-sea interactions
- Applying parameterisation for radiative energy intake in ocean
- Utilising turbulence closure scheme for atmosphere and ocean
- Possible different discretisation for atmosphere and ocean, i.e. horizontal interpolation at air-sea interface as part of discretisation

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
		000000000000000000000000000000000000000	00

Atmosphere components: dry air (d), water vapour (v), liquid water (1), ice (i), rain drops (r) and snow (sn) Wacker et al., 2006, Bott, 2008

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Atmosphere components: dry air (d), water vapour (v), liquid water (l), ice (i), rain drops (r) and snow (sn)
 Ocean components: fresh water (f) and salinity (sa)

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Tobias Bauer (tobias.bauer@tropos.de)

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
		000000000000000000000000000000000000000	00

Water vapour (v): $I_v = -I_{v,l} - I_{v,i} - I_{v,r}$ $S_v = S_{f,v}$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
		000000000000000000000000000000000000000	00

Water vapour (v): $I_v = -I_{v,l} - I_{v,i} - I_{v,r}$ $S_v = S_{f,v}$ Liquid water (1): $I_l = I_{v,l} - I_{l,i} - I_{l,r}$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
		000000000000000000000000000000000000000	00

Water vapour (v): $I_v = -I_{v,l} - I_{v,i} - I_{v,r}$ $S_v = S_{f,v}$ Liquid water (*I*): $I_l = I_{v,l} - I_{l,i} - I_{l,r}$ lce (*i*): $I_i = I_{v,i} + I_{l,i} - I_{i,sn}$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
		000000000000000000000000000000000000000	00

Water vapour (v): $I_{v} = -I_{v,l} - I_{v,i} - I_{v,r}$ $S_{v} = S_{f,v}$ Liquid water (*l*): $I_{l} = I_{v,l} - I_{l,i} - I_{l,r}$ lce (*i*): $I_{i} = I_{v,i} + I_{l,i} - I_{i,sn}$ Rain drops (*r*): $I_{r} = I_{v,r} + I_{l,r} - I_{r,sn}$ $S_{r} = -S_{r,f}$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
		000000000000000000000000000000000000000	00

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Atmosphere components: dry air (d), water vapour (v), liquid water (l), ice (i), rain drops (r) and snow (sn)
 Ocean components: fresh water (f) and salinity (sa)

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

- Atmosphere components: dry air (d), water vapour (v), liquid water (l), ice (i), rain drops (r) and snow (sn)
 Wacker et al., 2006, Bott, 2008
- **2** Ocean components: fresh water (f) and salinity (sa)

- Burchard et al., 2004
- ③ No internal and external source and sink terms for dry air and salinity

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

- Atmosphere components: dry air (d), water vapour (v), liquid water (l), ice (i), rain drops (r) and snow (sn)
 Wacker et al., 2006, Bott, 2008
- **2** Ocean components: fresh water (f) and salinity (sa)

- Burchard et al., 2004
- ③ No internal and external source and sink terms for dry air and salinity
- ④ No internal source and sink term for fresh water

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

- Atmosphere components: dry air (d), water vapour (v), liquid water (l), ice (i), rain drops (r) and snow (sn) Wacker et al., 2006, Bott, 2008
- **2** Ocean components: fresh water (f) and salinity (sa)
- ③ No internal and external source and sink terms for dry air and salinity
- O No internal source and sink term for fresh water

Mass conservation of atmosphere-ocean system:

- \Rightarrow exchange of mass at air-sea interface
- \Rightarrow atmosphere and ocean, each on its own not mass conserving
- \Rightarrow compressible and non-hydrostatic set of equation

Burchard et al., 2004
Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Atmosphere:

- Dry air (d): $\frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \cdot \mathbf{v}_d) = 0$
- All other components:

$$rac{\partial
ho_k}{\partial t} +
abla ullet (
ho_k \cdot \mathbf{v}_k) = I_k + S_k$$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Atmosphere:

- Dry air (d): $\frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \cdot \mathbf{v}_d) = 0$
- All other components:

$$\frac{\partial \rho_k}{\partial t} + \nabla \cdot (\rho_k \cdot \mathbf{v}_k) = I_k + S_k$$

$$\frac{\partial \rho^A}{\partial t} + \nabla \cdot \left(\rho^A \cdot \mathbf{v}^A \right) = \sum \left[I_k + S_k \right] = S$$

Atmosphere:

- Dry air (d): $\frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \cdot \mathbf{v}_d) = 0$
- All other components: $\frac{\partial \rho_k}{\partial t} + \nabla \cdot (\rho_k \cdot \mathbf{v}_k) = I_k + S_k$

$$\frac{\partial \rho^A}{\partial t} + \nabla \cdot \left(\rho^A \cdot \mathbf{v}^A \right) = \sum \left[I_k + S_k \right] = S$$

Ocean:

- Fresh water (f): $\frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f \cdot \mathbf{v}_f) = S_f$
- Salinity (sa): $\frac{\partial \rho_{sa}}{\partial t} + \nabla \cdot (\rho_{sa} \cdot \mathbf{v}_{sa}) = 0$

Atmosphere:

- Dry air (d): $\frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \cdot \mathbf{v}_d) = 0$
- All other components: $\frac{\partial \rho_k}{\partial t} + \nabla \cdot (\rho_k \cdot \mathbf{v}_k) = I_k + S_k$

$$\frac{\partial \rho^{A}}{\partial t} + \nabla \cdot \left(\rho^{A} \cdot \mathbf{v}^{A} \right) = \sum \left[I_{k} + S_{k} \right] = S$$

Ocean:

• Fresh water (f): $\frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f \cdot \mathbf{v}_f) = S_f$

• Salinity (sa):

$$\frac{\partial \rho_{sa}}{\partial t} + \nabla \cdot (\rho_{sa} \cdot \mathbf{v}_{sa}) = 0$$

$$\frac{\partial \rho^{O}}{\partial t} + \nabla \cdot \left(\rho^{O} \cdot \mathbf{v}^{O} \right) = S_{f}$$

Atmosphere:

- Dry air (d): $\frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \cdot \mathbf{v}_d) = 0$
- All other components: $\frac{\partial \rho_k}{\partial t} + \nabla \cdot (\rho_k \cdot \mathbf{v}_k) = I_k + S_k$

$$\frac{\partial \rho^{A}}{\partial t} + \nabla \cdot \left(\rho^{A} \cdot \mathbf{v}^{A} \right) = \sum \left[I_{k} + S_{k} \right] = S$$

Ocean:

• Fresh water (f): $\frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f \cdot \mathbf{v}_f) = S_f$

• Salinity (sa):

$$\frac{\partial \rho_{sa}}{\partial t} + \nabla \cdot (\rho_{sa} \cdot \mathbf{v}_{sa}) = 0$$

$$\frac{\partial \rho^{O}}{\partial t} + \nabla \cdot \left(\rho^{O} \cdot \mathbf{v}^{O} \right) = S_{f}$$

Mass conserving:
$$\frac{\partial (\rho^A + \rho^O)}{\partial t} + \nabla \cdot (\rho^A \cdot \mathbf{v}^A + \rho^O \cdot \mathbf{v}^O) = S + S_f = 0$$
$$\Rightarrow S = -S_f$$

Idealised atmosphere-ocean model: further assumptions

Atmosphere:

- Treatment as ideal gas
- No pressure forces on hydrometers, i.e. only on dry air and water vapour
- Equation of state: $\rho = \rho^A \cdot R \cdot T = \rho^A \cdot R_d \cdot T_v$

Ocean:

- Handling of salinity as tracer
- Linearised equation of state: $\rho^{O} = \rho_{0}^{O} \cdot (1 + \alpha \cdot (\theta \theta_{I}) + \beta \cdot (sa sa_{I}))$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (atmosphere):

$$\frac{\partial(\rho^{A}\mathbf{v}^{A})}{\partial t} + \nabla \cdot \left(\rho^{A}\mathbf{v}^{A} \cdot \mathbf{v}^{A^{T}}\right) = -\nabla \rho^{A} - \rho^{A} \cdot \nabla \phi - 2 \cdot \Omega \times \rho^{A}\mathbf{v}^{A} + \nabla \cdot \tau^{A} + \mathbf{v}^{A} \cdot S + \sum \left[\left(\mathbf{v}_{k} - \mathbf{v}^{A}\right) \cdot \left(I_{k} + S_{k}\right)\right] - \sum \left[\nabla \cdot \left(\rho_{k}\left(\mathbf{v}_{k} - \mathbf{v}^{A}\right) \cdot \left(\mathbf{v}_{k} - \mathbf{v}^{A}\right)^{T}\right)\right]$$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (atmosphere):

$$\frac{\partial (\rho^{A} \mathbf{v}^{A})}{\partial t} + \nabla \cdot \left(\rho^{A} \mathbf{v}^{A} \cdot \mathbf{v}^{A^{T}} \right) = -\nabla \rho^{A} - \rho^{A} \cdot \nabla \phi - 2 \cdot \Omega \times \rho^{A} \mathbf{v}^{A} + \nabla \cdot \tau^{A} + \mathbf{v}^{A} \cdot S + \sum \left[\left(\mathbf{v}_{k} - \mathbf{v}^{A} \right) \cdot \left(I_{k} + S_{k} \right) \right] - \sum \left[\nabla \cdot \left(\rho_{k} \left(\mathbf{v}_{k} - \mathbf{v}^{A} \right) \cdot \left(\mathbf{v}_{k} - \mathbf{v}^{A} \right)^{T} \right) \right]$$

Differences to **ICON**:

Lange, 2002, Gassmann et al., 2008

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (atmosphere):

$$\frac{\partial (\rho^{A} \mathbf{v}^{A})}{\partial t} + \nabla \cdot \left(\rho^{A} \mathbf{v}^{A} \cdot \mathbf{v}^{A^{T}} \right) = -\nabla \rho^{A} - \rho^{A} \cdot \nabla \phi - 2 \cdot \Omega \times \rho^{A} \mathbf{v}^{A} + \nabla \cdot \tau^{A} + \mathbf{v}^{A} \cdot S + \sum \left[\left(\mathbf{v}_{k} - \mathbf{v}^{A} \right) \cdot \left(I_{k} + S_{k} \right) \right] - \sum \left[\nabla \cdot \left(\rho_{k} \left(\mathbf{v}_{k} - \mathbf{v}^{A} \right) \cdot \left(\mathbf{v}_{k} - \mathbf{v}^{A} \right)^{T} \right) \right]$$

Differences to ICON:

Lange, 2002, Gassmann et al., 2008

• Mass conservation: S = 0

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (atmosphere):

$$\frac{\partial (\rho^{A} \mathbf{v}^{A})}{\partial t} + \nabla \cdot \left(\rho^{A} \mathbf{v}^{A} \cdot \mathbf{v}^{A^{T}} \right) = -\nabla \rho^{A} - \rho^{A} \cdot \nabla \phi - 2 \cdot \Omega \times \rho^{A} \mathbf{v}^{A} + \nabla \cdot \tau^{A} + \sum \left[\left(\mathbf{v}_{k} - \mathbf{v}^{A} \right) \cdot \left(I_{k} + S_{k} \right) \right] - \sum \left[\nabla \cdot \left(\rho_{k} \left(\mathbf{v}_{k} - \mathbf{v}^{A} \right) \cdot \left(\mathbf{v}_{k} - \mathbf{v}^{A} \right)^{T} \right) \right]$$

Differences to ICON:

Lange, 2002, Gassmann et al., 2008

• Mass conservation: S = 0

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (atmosphere):

$$\frac{\partial (\rho^{A} \mathbf{v}^{A})}{\partial t} + \nabla \cdot \left(\rho^{A} \mathbf{v}^{A} \cdot \mathbf{v}^{A^{T}} \right) = -\nabla \rho^{A} - \rho^{A} \cdot \nabla \phi - 2 \cdot \Omega \times \rho^{A} \mathbf{v}^{A} + \nabla \cdot \tau^{A} + \sum \left[\left(\mathbf{v}_{k} - \mathbf{v}^{A} \right) \cdot \left(I_{k} + S_{k} \right) \right] - \sum \left[\nabla \cdot \left(\rho_{k} \left(\mathbf{v}_{k} - \mathbf{v}^{A} \right) \cdot \left(\mathbf{v}_{k} - \mathbf{v}^{A} \right)^{T} \right) \right]$$

Differences to ICON:

Lange, 2002, Gassmann et al., 2008

- Mass conservation: S = 0
- a) $\sum \left[\left(\mathbf{v}_k \mathbf{v}^A \right) \cdot \left(I_k + S_k \right) \right] = 0$

(conservation of momentum due to chemical reactions)

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (atmosphere):

$$\frac{\partial (\rho^{A} \mathbf{v}^{A})}{\partial t} + \nabla \cdot \left(\rho^{A} \mathbf{v}^{A} \cdot \mathbf{v}^{A^{T}} \right) = -\nabla \rho^{A} - \rho^{A} \cdot \nabla \phi - 2 \cdot \Omega \times \rho^{A} \mathbf{v}^{A} + \nabla \cdot \tau^{A} - \sum \left[\nabla \cdot \left(\rho_{k} \left(\mathbf{v}_{k} - \mathbf{v}^{A} \right) \cdot \left(\mathbf{v}_{k} - \mathbf{v}^{A} \right)^{T} \right) \right]$$

Differences to ICON:

- Mass conservation: S = 0
- a) $\sum \left[(\mathbf{v}_k \mathbf{v}^A) \cdot (I_k + S_k) \right] = 0$ (conservation of momentum due to chemical reactions) b) $\mathbf{v}_k \approx \mathbf{v}^A \Rightarrow \sum \left[\nabla \cdot \left(\rho_k \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot \left(\mathbf{v}_k - \mathbf{v}^A \right)^T \right) \right] \ll \nabla \cdot \left(\rho^A \mathbf{v}^A \cdot \mathbf{v}^A^T \right) \Rightarrow \text{negligible}$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (atmosphere):

$$\frac{\partial(\rho^{A}\mathbf{v}^{A})}{\partial t} + \nabla \cdot \left(\rho^{A}\mathbf{v}^{A} \cdot \mathbf{v}^{A^{T}}\right) = -\nabla \rho^{A} - \rho^{A} \cdot \nabla \phi - 2 \cdot \Omega \times \rho^{A}\mathbf{v}^{A} + \nabla \cdot \tau^{A}$$

Differences to ICON:

Lange, 2002, Gassmann et al., 2008

- Mass conservation: S = 0
- a) $\sum \left[(\mathbf{v}_k \mathbf{v}^A) \cdot (I_k + S_k) \right] = 0$ (conservation of momentum due to chemical reactions) b) $\mathbf{v}_k \approx \mathbf{v}^A \Rightarrow \sum \left[\nabla \cdot \left(\rho_k \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot \left(\mathbf{v}_k - \mathbf{v}^A \right)^T \right) \right] \ll \nabla \cdot \left(\rho^A \mathbf{v}^A \cdot \mathbf{v}^A^T \right) \Rightarrow$ negligible

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (ocean):

$$\frac{\partial(\rho^{O}\mathbf{v}^{O})}{\partial t} + \nabla \cdot \left(\rho^{O}\mathbf{v}^{O}\cdot\mathbf{v}^{OT}\right) = -\nabla\rho^{O} - \rho^{O}\cdot\nabla\phi - 2\cdot\Omega\times\rho^{O}\mathbf{v}^{O} + \nabla\cdot\tau^{O} + \mathbf{v}_{f}\cdot S_{f} - \sum\left[\nabla \cdot \left(\rho_{k}\left(\mathbf{v}_{k}-\mathbf{v}^{O}\right)\cdot\left(\mathbf{v}_{k}-\mathbf{v}^{O}\right)^{T}\right)\right]$$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (ocean):

$$\frac{\partial (\rho^{O} \mathbf{v}^{O})}{\partial t} + \nabla \cdot \left(\rho^{O} \mathbf{v}^{O} \cdot \mathbf{v}^{OT} \right) = -\nabla p^{O} - \rho^{O} \cdot \nabla \phi - 2 \cdot \Omega \times \rho^{O} \mathbf{v}^{O} + \nabla \cdot \tau^{O} + \mathbf{v}_{f} \cdot S_{f} - \sum \left[\nabla \cdot \left(\rho_{k} \left(\mathbf{v}_{k} - \mathbf{v}^{O} \right) \cdot \left(\mathbf{v}_{k} - \mathbf{v}^{O} \right)^{T} \right) \right]$$

Differences to **GETM**:

Burchard et al., 2004

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (ocean):

$$\frac{\partial (\rho^{O} \mathbf{v}^{O})}{\partial t} + \nabla \cdot \left(\rho^{O} \mathbf{v}^{O} \cdot \mathbf{v}^{OT} \right) = -\nabla \rho^{O} - \rho^{O} \cdot \nabla \phi - 2 \cdot \Omega \times \rho^{O} \mathbf{v}^{O} + \nabla \cdot \tau^{O} + \mathbf{v}_{f} \cdot S_{f} - \sum \left[\nabla \cdot \left(\rho_{k} \left(\mathbf{v}_{k} - \mathbf{v}^{O} \right) \cdot \left(\mathbf{v}_{k} - \mathbf{v}^{O} \right)^{T} \right) \right]$$

Differences to **GETM**:

Burchard et al., 2004

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (ocean):

$$\frac{\partial(\rho^{O}\mathbf{v}^{O})}{\partial t} + \nabla \cdot \left(\rho^{O}\mathbf{v}^{O}\cdot\mathbf{v}^{OT}\right) = -\nabla\rho^{O} - \rho^{O}\cdot\nabla\phi - 2\cdot\Omega\times\rho^{O}\mathbf{v}^{O} + \nabla\cdot\tau^{O} - \sum\left[\nabla\cdot\left(\rho_{k}\left(\mathbf{v}_{k}-\mathbf{v}^{O}\right)\cdot\left(\mathbf{v}_{k}-\mathbf{v}^{O}\right)^{T}\right)\right]\right]$$

Differences to **GETM**:

Burchard et al., 2004

• Boussinesq approximation leads to mass conservation, i.e. $S_f = 0$

•
$$\mathbf{v}_{k} = \mathbf{v}^{O} \Rightarrow \sum \left[\nabla \cdot \left(\rho_{k} (\mathbf{v}_{k} - \mathbf{v}) \cdot (\mathbf{v}_{k} - \mathbf{v})^{T} \right) \right] = 0$$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Momentum equation (ocean):

$$\frac{\partial (\rho^{O} \mathbf{v}^{O})}{\partial t} + \nabla \cdot \left(\rho^{O} \mathbf{v}^{O} \cdot \mathbf{v}^{O^{T}} \right) = -\nabla p^{O} - \rho^{O} \cdot \nabla \phi - 2 \cdot \Omega \times \rho^{O} \mathbf{v}^{O} + \nabla \cdot \tau^{O}$$

Differences to **GETM**:

Burchard et al., 2004

•
$$\mathbf{v}_k = \mathbf{v}^O \Rightarrow \sum \left[\nabla \cdot \left(\rho_k \left(\mathbf{v}_k - \mathbf{v} \right) \cdot \left(\mathbf{v}_k - \mathbf{v} \right)^T \right) \right] = 0$$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Energy equation (atmosphere):

$$\begin{split} & \sum \left[\frac{\partial(\rho_k \kappa_k)}{\partial t} + \nabla \cdot (\rho_k \kappa_k \cdot \mathbf{v}_k) \right] + \frac{\partial(\rho^A \phi)}{\partial t} + \nabla \cdot (\rho^A \phi \cdot \mathbf{v}^A) + \frac{\partial(\rho^A e^A)}{\partial t} + \nabla \cdot (\rho^A e^A \cdot \mathbf{v}^A) \\ &= \sum \left[- \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot \nabla \rho_k + \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot (\nabla \cdot \tau_k) + \left(\kappa_k - \kappa^A \right) \cdot (I_k + S_k) \right] \\ &- \nabla \cdot \left(\rho^A \cdot \mathbf{v}^A \right) + \nabla \cdot \left(\tau^A \cdot \mathbf{v}^A \right) - \nabla \cdot Q^A + \left(\kappa^A + \phi + h^A \right) \cdot S \end{split}$$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	0000000000000000	00

Energy equation (atmosphere):

$$\begin{split} & \sum \left[\frac{\partial(\rho_k \kappa_k)}{\partial t} + \nabla \cdot (\rho_k \kappa_k \cdot \mathbf{v}_k) \right] + \frac{\partial(\rho^A \phi)}{\partial t} + \nabla \cdot (\rho^A \phi \cdot \mathbf{v}^A) + \frac{\partial(\rho^A e^A)}{\partial t} + \nabla \cdot (\rho^A e^A \cdot \mathbf{v}^A) \\ &= \sum \left[- \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot \nabla \rho_k + \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot (\nabla \cdot \tau_k) + \left(\kappa_k - \kappa^A \right) \cdot (I_k + S_k) \right] \\ &- \nabla \cdot (\rho^A \cdot \mathbf{v}^A) + \nabla \cdot (\tau^A \cdot \mathbf{v}^A) - \nabla \cdot Q^A + (\kappa^A + \phi + h^A) \cdot S \end{split}$$

Differences to ICON:

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	0000000000000000	00

Energy equation (atmosphere):

$$\begin{split} & \sum \left[\frac{\partial(\rho_k \kappa_k)}{\partial t} + \nabla \cdot (\rho_k \kappa_k \cdot \mathbf{v}_k) \right] + \frac{\partial(\rho^A \phi)}{\partial t} + \nabla \cdot (\rho^A \phi \cdot \mathbf{v}^A) + \frac{\partial(\rho^A e^A)}{\partial t} + \nabla \cdot (\rho^A e^A \cdot \mathbf{v}^A) \\ &= \sum \left[- \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot \nabla \rho_k + \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot (\nabla \cdot \tau_k) + \left(\kappa_k - \kappa^A \right) \cdot (I_k + S_k) \right] \\ &- \nabla \cdot \left(\rho^A \cdot \mathbf{v}^A \right) + \nabla \cdot \left(\tau^A \cdot \mathbf{v}^A \right) - \nabla \cdot Q^A + \left(\kappa^A + \phi + h^A \right) \cdot S \end{split}$$

Differences to ICON:

Lange, 2002, Gassmann et al., 2008

• Mass conservation: S = 0

Leibniz Institute for Tropospheric Research

Energy equation (atmosphere):

$$\begin{split} & \sum \left[\frac{\partial(\rho_k \kappa_k)}{\partial t} + \nabla \cdot (\rho_k \kappa_k \cdot \mathbf{v}_k) \right] + \frac{\partial(\rho^A \phi)}{\partial t} + \nabla \cdot (\rho^A \phi \cdot \mathbf{v}^A) + \frac{\partial(\rho^A e^A)}{\partial t} + \nabla \cdot (\rho^A e^A \cdot \mathbf{v}^A) \\ &= \sum \left[- \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot \nabla \rho_k + \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot (\nabla \cdot \tau_k) + \left(\kappa_k - \kappa^A \right) \cdot (I_k + S_k) \right] \\ &- \nabla \cdot (\rho^A \cdot \mathbf{v}^A) + \nabla \cdot (\tau^A \cdot \mathbf{v}^A) - \nabla \cdot Q^A \end{split}$$

Differences to ICON:

- Mass conservation: *S* = 0
- $\mathbf{v}_k \approx \mathbf{v}^A \Rightarrow K_k \approx K^A \Rightarrow \text{negligible}$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	0000000000000000	00

Energy equation (atmosphere):

$$\begin{split} & \sum \left[\frac{\partial(\rho_k \kappa_k)}{\partial t} + \nabla \cdot (\rho_k \kappa_k \cdot \mathbf{v}_k) \right] + \frac{\partial(\rho^A \phi)}{\partial t} + \nabla \cdot (\rho^A \phi \cdot \mathbf{v}^A) + \frac{\partial(\rho^A e^A)}{\partial t} + \nabla \cdot (\rho^A e^A \cdot \mathbf{v}^A) \\ &= \sum \left[- \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot \nabla \rho_k + \left(\mathbf{v}_k - \mathbf{v}^A \right) \cdot (\nabla \cdot \tau_k) + \left(\kappa_k - \kappa^A \right) \cdot (I_k + S_k) \right] \\ &- \nabla \cdot (\rho^A \cdot \mathbf{v}^A) + \nabla \cdot (\tau^A \cdot \mathbf{v}^A) - \nabla \cdot Q^A \end{split}$$

Differences to ICON:

- Mass conservation: *S* = 0
- $\mathbf{v}_k \approx \mathbf{v}^A \Rightarrow K_k \approx K^A \Rightarrow$ negligible

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Energy equation (atmosphere):

$$\begin{split} & \sum \left[\frac{\partial (\rho_k \kappa^A)}{\partial t} + \nabla \cdot \left(\rho_k \kappa^A \cdot \mathbf{v}_k \right) \right] + \frac{\partial (\rho^A \phi)}{\partial t} + \nabla \cdot \left(\rho^A \phi \cdot \mathbf{v}^A \right) + \frac{\partial (\rho^A e^A)}{\partial t} + \nabla \cdot \left(\rho^A e^A \cdot \mathbf{v}^A \right) \\ &= -\nabla \cdot \left(\rho^A \cdot \mathbf{v}^A \right) + \nabla \cdot \left(\tau^A \cdot \mathbf{v}^A \right) - \nabla \cdot Q^A \end{split}$$

Differences to ICON:

- Mass conservation: *S* = 0
- $\mathbf{v}_k \approx \mathbf{v}^A \Rightarrow K_k \approx K^A \Rightarrow$ negligible

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	0000000000000000	00

Energy equation (atmosphere):

$$\begin{aligned} &\frac{\partial\left(\rho^{A}\left(\boldsymbol{K}^{A}+\boldsymbol{\phi}+\boldsymbol{e}^{A}\right)\right)}{\partial t}+\nabla\boldsymbol{\cdot}\left(\rho^{A}\left(\boldsymbol{K}^{A}+\boldsymbol{\phi}+\boldsymbol{e}^{A}\right)\cdot\boldsymbol{v}^{A}\right)\\ &=-\nabla\boldsymbol{\cdot}\left(\rho^{A}\cdot\boldsymbol{v}^{A}\right)+\nabla\boldsymbol{\cdot}\left(\boldsymbol{\tau}^{A}\cdot\boldsymbol{v}^{A}\right)-\nabla\boldsymbol{\cdot}\boldsymbol{Q}^{A}\end{aligned}$$

Differences to ICON:

- Mass conservation: S = 0
- $\mathbf{v}_k \approx \mathbf{v}^A \Rightarrow K_k \approx K^A \Rightarrow \text{negligible}$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Energy equation (ocean):

$$\begin{split} & \sum \left[\frac{\partial (\rho_k K_k)}{\partial t} + \nabla \cdot (\rho_k K_k \cdot \mathbf{v}_k) \right] + \frac{\partial (\rho^o \phi)}{\partial t} + \nabla \cdot (\rho^O \phi \cdot \mathbf{v}^O) + \frac{\partial (\rho^o e^O)}{\partial t} + \nabla \cdot (\rho^O e^O \cdot \mathbf{v}^O) \\ &= \sum \left[- \left(\mathbf{v}_k - \mathbf{v}^O \right) \cdot \nabla p_k + \left(\mathbf{v}_k - \mathbf{v}^O \right) \cdot (\nabla \cdot \tau_k) \right] \\ & - \nabla \cdot (p^O \cdot \mathbf{v}^O) + \nabla \cdot (\tau^O \cdot \mathbf{v}^O) - \nabla \cdot Q^O + (K_f + \phi + h^O) \cdot S_f \end{split}$$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Energy equation (ocean):

$$\begin{split} & \sum \left[\frac{\partial(\rho_k \kappa_k)}{\partial t} + \nabla \cdot (\rho_k \kappa_k \cdot \mathbf{v}_k) \right] + \frac{\partial(\rho^o \phi)}{\partial t} + \nabla \cdot (\rho^O \phi \cdot \mathbf{v}^O) + \frac{\partial(\rho^o e^O)}{\partial t} + \nabla \cdot (\rho^O e^O \cdot \mathbf{v}^O) \\ &= \sum \left[- \left(\mathbf{v}_k - \mathbf{v}^O \right) \cdot \nabla p_k + \left(\mathbf{v}_k - \mathbf{v}^O \right) \cdot (\nabla \cdot \tau_k) \right] \\ & - \nabla \cdot (p^O \cdot \mathbf{v}^O) + \nabla \cdot (\tau^O \cdot \mathbf{v}^O) - \nabla \cdot Q^O + (\kappa_f + \phi + h^O) \cdot S_f \end{split}$$

Differences to **GETM**:

Burchard et al., 2004

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000	00

Energy equation (ocean):

$$\begin{split} & \sum \left[\frac{\partial (\rho_k \kappa_k)}{\partial t} + \nabla \cdot (\rho_k \kappa_k \cdot \mathbf{v}_k) \right] + \frac{\partial (\rho^o \phi)}{\partial t} + \nabla \cdot (\rho^O \phi \cdot \mathbf{v}^O) + \frac{\partial (\rho^o e^O)}{\partial t} + \nabla \cdot (\rho^O e^O \cdot \mathbf{v}^O) \\ &= \sum \left[- \left(\mathbf{v}_k - \mathbf{v}^O \right) \cdot \nabla \rho_k + \left(\mathbf{v}_k - \mathbf{v}^O \right) \cdot (\nabla \cdot \tau_k) \right] \\ & - \nabla \cdot (\rho^O \cdot \mathbf{v}^O) + \nabla \cdot (\tau^O \cdot \mathbf{v}^O) - \nabla \cdot Q^O + (\kappa_f + \phi + h^O) \cdot S_f \end{split}$$

Differences to **GETM**:

Burchard et al., 2004

• Boussinesq approximation leads to mass conservation, i.e. $S_f = 0$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Energy equation (ocean):

$$\begin{split} & \sum \left[\frac{\partial (\rho_k K_k)}{\partial t} + \nabla \cdot (\rho_k K_k \cdot \mathbf{v}_k) \right] + \frac{\partial (\rho^o \phi)}{\partial t} + \nabla \cdot (\rho^O \phi \cdot \mathbf{v}^O) + \frac{\partial (\rho^o e^O)}{\partial t} + \nabla \cdot (\rho^O e^O \cdot \mathbf{v}^O) \\ &= \sum \left[- \left(\mathbf{v}_k - \mathbf{v}^O \right) \cdot \nabla \rho_k + \left(\mathbf{v}_k - \mathbf{v}^O \right) \cdot (\nabla \cdot \tau_k) \right] \\ &- \nabla \cdot (\rho^O \cdot \mathbf{v}^O) + \nabla \cdot (\tau^O \cdot \mathbf{v}^O) - \nabla \cdot Q^O \end{split}$$

Differences to **GETM**:

Burchard et al., 2004

•
$$\mathbf{v}_k = \mathbf{v}^O \Rightarrow K_k = K^O$$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Energy equation (ocean):

$$\sum \left[\frac{\partial (\rho_k \kappa^o)}{\partial t} + \nabla \cdot (\rho_k \kappa^o \cdot \mathbf{v}_k) \right] + \frac{\partial (\rho^o \phi)}{\partial t} + \nabla \cdot (\rho^o \phi \cdot \mathbf{v}^o) + \frac{\partial (\rho^o e^o)}{\partial t} + \nabla \cdot (\rho^o e^o \cdot \mathbf{v}^o)$$
$$= -\nabla \cdot (\rho^o \cdot \mathbf{v}^o) + \nabla \cdot (\tau^o \cdot \mathbf{v}^o) - \nabla \cdot Q^o$$

Differences to **GETM**:

Burchard et al., 2004

•
$$\mathbf{v}_k = \mathbf{v}^O \Rightarrow K_k = K^O$$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	0000000000000000	00

Energy equation (ocean):

$$\begin{aligned} & \frac{\partial \left(\rho^{O} \left(K^{O} + \phi + e^{O} \right) \right)}{\partial t} + \nabla \cdot \left(\rho^{O} \left(K^{O} + \phi + e^{O} \right) \cdot \mathbf{v}^{O} \right) \\ & = -\nabla \cdot \left(p^{O} \cdot \mathbf{v}^{O} \right) + \nabla \cdot \left(\tau^{O} \cdot \mathbf{v}^{O} \right) - \nabla \cdot Q^{O} \end{aligned}$$

Differences to **GETM**:

Burchard et al., 2004

•
$$\mathbf{v}_k = \mathbf{v}^O \Rightarrow K_k = K^O$$

Idealised atmosphere-ocean model: air-sea interactions

- Mass and momentum conservation and energy consistency
- Unified parameterisation of air-sea interactions
- Applying parameterisation for radiative energy intake in ocean
- Utilising turbulence closure scheme for atmosphere and ocean
- Possible different discretisation for atmosphere and ocean, i.e. horizontal interpolation at air-sea interface as part of discretisation

Idealised atmosphere-ocean model: air-sea interactions

- Mass and momentum conservation and energy consistency
- Unified parameterisation of air-sea interactions
- Applying parameterisation for radiative energy intake in ocean
- Utilising turbulence closure scheme for atmosphere and ocean
- Possible different discretisation for atmosphere and ocean, i.e. horizontal interpolation at air-sea interface as part of discretisation

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

Idealised atmosphere-ocean model: air-sea interactions

- Mass exchange due to
 - a) Precipitation: $S_{r,f} + S_{sn,f}$
 - b) Evaporation: $S_{f,v}$

Idealised atmosphere-ocean model: source and sink connections

Idealised atmosphere-ocean model: source and sink connections

er vapour (<i>v</i>):	$I_{v} = -I_{v,l} - I_{v,i} - I_{v,r}$		
	$S_v = S_{f,v}$		
d water (1):	$I_{l} = I_{v,l} - I_{l,i} - I_{l,r}$		
<i>i</i>):	$I_i = I_{v,i} + I_{l,i} - I_{i,sn}$		
drops (r):	$I_r = I_{\nu,r} + I_{l,r} - I_{r,sn}$		
	$S_r = -S_{r,f}$		
v (sn):	$I_{sn} = I_{r,sn} + I_{i,sn}$		
	$S_{sn} = -S_{sn,f}$		
n water (<i>f</i>):	$S_f = S_{r,f} + S_{sn,f} - S_{f,v}$		
	Leibnic Institute for Troopspheric Research		
Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
-------------------------------	-----------------------------------	---	-----------------------
		000000000000000000000000000000000000000	00

Idealised atmosphere-ocean model: source and sink connections

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

- Mass exchange due to
 - a) Precipitation: $S_{r,f} + S_{sn,f}$
 - b) Evaporation: $S_{f,v}$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

- Mass exchange due to
 - a) Precipitation: $S_{r,f} + S_{sn,f}$
 - b) Evaporation: $S_{f,v}$

Note: Mass conservation is assumed, i.e. precipitation leaves the atmosphere and enters the ocean, for evaporation vice versa.

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

- Mass exchange due to
 - a) Precipitation: $S_{r,f} + S_{sn,f}$
 - b) Evaporation: $S_{f,v}$

Note: Mass conservation is assumed, i.e. precipitation leaves the atmosphere and enters the ocean, for evaporation vice versa.

• Heat exchange and radiative energy intake: formulation of $\nabla \cdot Q^A$ and $\nabla \cdot Q^O$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

- Mass exchange due to
 - a) Precipitation: $S_{r,f} + S_{sn,f}$
 - b) Evaporation: $S_{f,v}$

Note: Mass conservation is assumed, i.e. precipitation leaves the atmosphere and enters the ocean, for evaporation vice versa.

• Heat exchange and radiative energy intake: formulation of $\nabla \cdot Q^A$ and $\nabla \cdot Q^O$

Treatment as external forcing of internal energy for individual atmosphere and ocean models:

$$Q^{A} = Q_{s} + Q_{l} + Q_{b}{}^{A} + Q_{LW}{}^{A} + Q_{SW}{}^{A}$$
 and $Q^{O} = -Q_{s} - Q_{l} + Q_{b}{}^{O} + Q_{LW}{}^{O} + Q_{SW}{}^{O}$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	000000000000000000000000000000000000000	00

- Mass exchange due to
 - a) Precipitation: $S_{r,f} + S_{sn,f}$
 - b) Evaporation: $S_{f,v}$

Note: Mass conservation is assumed, i.e. precipitation leaves the atmosphere and enters the ocean, for evaporation vice versa.

- Heat exchange and radiative energy intake: formulation of $\nabla \cdot Q^A$ and $\nabla \cdot Q^O$

Treatment as external forcing of internal energy for individual atmosphere and ocean models:

$$Q^{A} = Q_{s} + Q_{l} + Q_{b}{}^{A} + Q_{LW}{}^{A} + Q_{SW}{}^{A}$$
 and $Q^{O} = -Q_{s} - Q_{l} + Q_{b}{}^{O} + Q_{LW}{}^{O} + Q_{SW}{}^{O}$

2 Atmosphere-ocean model: radiative energy intake as external forcing of internal energy: $Q = Q_b{}^A + Q_b{}^O + Q_{LW}{}^A + Q_{LW}{}^O + Q_{SW}{}^O + Q_{SW}{}^O$

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	00000000000000	00

 Rise and sink of sea level with precipitation (P) and evaporation (E)

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	00000000000000	00

- Rise and sink of sea level with precipitation (P) and evaporation (E)
- Fixed vertical layer at z = 0 either in atmosphere or ocean

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000	0000	00000000000000	00

- Rise and sink of sea level with precipitation (P) and evaporation (E)
- Fixed vertical layer at z = 0 either in atmosphere or ocean
- Adaptive vertical discretisation necessary

Motivation	1: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook
000		0000	000000000000000	•0
Came	Justana			
Lonc	lusions			

- Coupling of atmosphere-ocean systems only recommended with unified parameterisation of air-sea interactions
- Mass conservation only for atmosphere-ocean systems and not for individual subsystems
- Idealised atmosphere-ocean model with further assumptions reformable to coupled ICON-GETM model
- Heat fluxes as external source for internal energy in atmosphere and ocean models, but not for whole atmosphere-ocean models
- Radiative energy intake always as external source for internal energy

Motivation: coastal upwelling	Air-sea interactions: ICON & GETM	Idealised model	Conclusions & Outlook ○●
Outlook			

- Applying turbulence closure scheme for idealised model
- Formulation of heat fluxes for idealised model with use of a coupler
- Investigation of different discretisation approaches for needs of idealised model
- Validation of idealised model against benchmark tests for atmosphere and ocean parts

References I

- Bott, Andreas (2008). "Theoretical considerations on the mass and energy consistent treatment of precipitation in cloudy atmospheres". In: *Atmospheric Research* 89.3, pp. 262–269.
 - Burchard, Hans, Karsten Bolding, and Manuel Ruiz Villarreal (2004). "Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary". In: *Ocean Dynamics* 54.2, pp. 250–265.
- Döscher, R et al. (2002). "The development of the coupled regional ocean-atmosphere model RCAO". In: *Boreal Env. Res.* 7.October, pp. 183–192.
- Gassmann, Almut and Hans-Joachim Herzog (2008). "Towards a consistent numerical compressible non-hydrostatic model using generalized Hamiltonian tools". In: *Quarterly Journal of the Royal Meteorological Society* 134.635, pp. 1597–1613.
- Gustafsson, Nils, Leif Nyberg, and Anders Omstedt (1998). "Coupling of a High-Resolution Atmospheric Model and an Ocean Model for the Baltic Sea". In: *Monthly Weather Review* 126.11, pp. 2822–2846.
 Hagedorn, Renate, Andreas Lehmann, and Daniela Jacob (2000). "A coupled high resolution atmosphere-ocean model for the BALTEX region". In: *Meteorologische Zeitschrift* 9, pp. 7–20.

References II

- Hill, Chris et al. (2004). "The architecture of the earth system modeling framework". In: Computing in Science & Engineering 6.1, pp. 18–28.
- Ho, H. T. M. et al. (2012). "COSTRICE three model online coupling using OASIS: problems and solutions". In: Geoscientific Model Development Discussions 5.4, pp. 3261–3310.
- Lange, Hans-Joachim (2002). Die Physik des Wetters und des Klimas: ein Grundkurs zur Theorie des Systems Atmosphäre. Reimer.
- Lehmann, Andreas, Philip Lorenz, and Daniela Jacob (2004). "Modelling the exceptional Baltic Sea inflow events in 2002-2003". In: Geophysical Research Letters 31.21, n/a-n/a.
- Perlin, Natalie et al. (2007). "Numerical Simulation of Air–Sea Coupling during Coastal Upwelling". In: Journal of Physical Oceanography 37.8, pp. 2081–2093.
- Umlauf, L. and H. Burchard (2003). "A generic length-scale equation for geophysical turbulence models". In: Journal of Marine Research 61.2, pp. 235-265.
- Van Pham, Trang et al. (2014). "New coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: Assessing air temperature sensitivity over the North and Baltic Seas". In: Oceanologia 56.2, pp. 167–189.

References III

Air-sea interactions

Tobias Bauer (tobias.bauer@tropos.de)

July 11, 2018

Ekman transport in water

- Rotation of 45° of surface current due to Coriolis force (Coriolis effect)
- Continuing of rotation into ocean till wind looses influence (Ekman spiral)
- Transporting of water in 90° angle of the wind (Ekman transport)
- Northern/southern hemisphere in right/left direction

www.oceanservice.noaa.gov (21.09.2016)

What is coastal upwelling?

- Oceanographic phenomenon
- Main drivers: wind, Coriolis effect and Ekman transport
- Brings dense, cooler and usually nutrient-rich water towards the ocean surface
- Higher marine productivity due to an increase in plankton
- Cooling of lower atmosphere

www.seos-project.eu (15.07.2016)

Appendix

Coastal upwelling – coast of Poland: May 25 – Jun 08, 2008

Weather map of Europe on 25th of May 2008 at 6am UTC

- Occasionally weather situation
- High pressure system over southern Scandinavia
- Wind direction mainly northeast

www.wetter3.de (21.09.2016)

7 / 12

(geopotential, relative topography and surface pressure)

Coupling techniques

Online coupling – What are the benefits of a coupler?

- Coupling of additional components to existent models, e.g. atmospheric chemistry, marine biology, carbon cycle etc.
- Developing of components independently from models
- Changing of existing code in the components minimized
- Performing of necessary interpolations
- Supporting of multiple core applications

Couplers: ESMF, MCT, OASIS, YAC

Coupled models for the Baltic Sea or coastal upwelling

Model	Atmosphere	Ocean	Reference
HIRLAM/BOBA-PROBE	HIRLAM	BOBA-PROBE	Gustafsson et al., 1998
REMO/BSMO	REMO	BSMO	Hagedorn et al., 2000
RCAO	RCA2	RCO	Döscher et al., 2002
BALTIMOS	REMO	BSIOM	Lehmann et al., 2004
COAMPS/ROMS	COAMPS	ROMS	Perlin et al., 2007
COSTRICE	COSMO-CLM	TRIMNP	Ho et al., 2012
COSMO-CLM/NEMO	COSMO-CLM	NEMO	Van Pham et al., 2014
RCA4_NEMO	RCA4	NEMO	Wang et al., 2015

Coupled models for the Baltic Sea or coastal upwelling

Model	Atmosphere	Ocean	Reference
HIRLAM/BOBA-PROBE	HIRLAM	BOBA-PROBE	Gustafsson et al., 1998
REMO/BSMO	REMO	BSMO	Hagedorn et al., 2000
RCAO	RCA2	RCO	Döscher et al., 2002
BALTIMOS	REMO	BSIOM	Lehmann et al., 2004
COAMPS/ROMS	COAMPS	ROMS	Perlin et al., 2007
COSTRICE	COSMO-CLM	TRIMNP	Ho et al., 2012
COSMO-CLM/NEMO	COSMO-CLM	NEMO	Van Pham et al., 2014
RCA4_NEMO	RCA4	NEMO	Wang et al., 2015

COAMPS/ROMS vs. COSMO-CLM/NEMO

	COAMPS/ROMS (Perlin et al., 2007)		COSMO-CLM/NEMO (Van Pham et al., 2014)	
	COAMPS	ROMS	COSMO-CLM	NEMO
Coupler	МСТ		OASIS3	
Equation	Non-hydrostatic,	Hydrostatic,	Non-hydrostatic,	Hydrostatic,
	compressible	free-surface	compressible	free-surface
Horizontal resolution	50x20 1-km by 1-km grid boxes		50 km	3 km
Vertical layers	47	40	40	56
Main achievement	Modelling of wind-driven up-		Investigation of 2 m temperature bi-	
	welling system along the coast		ases between observed data and	
	of Oregon		(un-)coupled results	

TROPOS Leibniz Institute for Tropospheric Research

Coupler: ESMF – Earth System Modeling Framework

- Suite of software tools for developing high-performance, multicomponent Earth science modeling applications
- Components: atmosphere, ocean, terrestrial or other physical domains and constituent processes (dynamical, chemical, biological etc.)
- Set of simple, consistent component interfaces applicable even to couplers themselves
- Variety of data structures for transferring data between components, libraries for regridding/interpolation, time advancement and other common modeling functions

Hill et al., 2004

