Physics coupling with the Finite-Volume Module of IFS

Christian Kühnlein, Sylvie Malardel, Piotr Smolarkiewicz, Nils Wedi

$$\begin{split} &\frac{\partial \mathcal{G}\rho}{\partial t} + \nabla\cdot (\mathbf{v}\mathcal{G}\rho) = 0 \\ &\frac{\partial \mathcal{G}\rho\mathbf{u}}{\partial t} + \nabla\cdot (\mathbf{v}\mathcal{G}\rho) = \mathcal{G}\rho \left(-\Theta_{a}\vec{\mathbf{G}}\nabla\varphi' - \frac{\mathbf{g}}{\theta_{a}}\left(\theta' + \theta_{a}(cq'_{a} - \mathbf{v}, \mathbf{v})\right) + \mathbf{f} \cdot \left(\mathbf{u} - \frac{\mathbf{v}}{\theta_{a}}\right) - \mathbf{M}(\mathbf{u}) + \mathbf{D} \right) \\ &\frac{\partial \mathcal{G}\rho\mathbf{u}}{\partial t} + \nabla\cdot (\mathbf{v}\mathcal{G}\rho\mathbf{u}) = \mathcal{G}\rho \left(-\widetilde{\mathbf{G}}^{T}\mathbf{u} \cdot \nabla\theta_{a} - \frac{1}{c_{p}\pi} \left(\frac{\Delta q_{rs}}{\Delta t} + \mathbf{I}_{c} \right) + \mathbf{H} \right) \\ &\frac{\partial \mathcal{G}\rho\mathbf{u}}{\partial t} + \nabla\cdot (\mathbf{v}\mathcal{G}\rho\mathbf{u}) = \mathcal{G}\rho\mathcal{R}^{ts} \\ &\frac{\partial \mathcal{G}\rho\varphi'}{\partial t} + \nabla\cdot (\mathbf{v}\mathcal{G}\rho\varphi') = \mathcal{G}\rho\sum_{\ell=1}^{3} \left(\frac{a_{\ell}}{\zeta_{\ell}}\nabla\cdot\zeta_{\ell} \left(\hat{\mathbf{v}} - \widetilde{\mathbf{G}}^{T}\mathbf{C}\nabla\varphi' \right) \right) + b, \end{split}$$

Operational configuration of the Integrated Forecasting System at ECMWF

Current operational dynamical core configuration of the Integrated Forecasting System (IFS) at the ECMWF:

- hydrostatic primitive equations (nonhydrostatic option available; see Benard et al. 2014)
- hybrid η p vertical coordinate (Simmons and Burridge, 1982)
- spherical harmonics representation in horizontal (Wedi et al., 2013)
- finite-element discretisation in vertical (Untch and Hortal, 2004)
- semi-implicit semi-Lagrangian (SISL) integration scheme (Temperton et al. 2001, Diamantakis 2014)
- cubic-octahedral ("TCo") grid (Wedi, 2014, Malardel et al. 2016)
- HRES: TCo1279 (O1280) with $\Delta_h \approx 9 \text{ km}$ and 137 vertical levels
- ENS (1+50 perturbed members): TCo639 (O640) with $\Delta_h \approx$ 18 km and 91 vertical levels

- IFS physics parametrizations for radiation, sub-grid scale turbulence and surface interaction, orographic/non-orographic drag, moist convection, clouds and stratiform precipitation, surface processes
- Fractional stepping within different parametrizations (Beljaars 1991)
- Coupling of IFS physics parametrizations to dynamical core using SLAVEPP (Semi-Lagrangian Averaging of Physical Parametrizations, Wedi 1999)

Finite-Volume Module of IFS-key formulation features

- moist-precipitating, deep-atmosphere, nonhydrostatic, fully compressible equations (Smolarkiewicz, Kühnlein, Grabowski 2017; Kühnlein et al. in prep.)
- flexible height-based terrain-following vertical coordinate
- hybrid of horizontally-unstructured median-dual finite-volume with vertically-structured finite-difference/finite-volume discretisation (Szmelter and Smolarkiewicz 2010; Smolarkiewicz et al. 2016)
- two-time-level semi-implicit integration scheme with 3D implicit acoustic, buoyant and rotational modes (Smolarkiewicz, Kühnlein, Wedi 2014)
- finite-volume non-oscillatory forward-in-time (NFT) MPDATA scheme (Smolarkiewicz and Szmelter 2005; Kühnlein and Smolarkiewicz 2017), directionally-split NFT advective transport (Kühnlein et al., in prep.)
- preconditioned generalised conjugate residual iterative solver for 3D elliptic problems arising in the semi-implicit integration schemes (Smolarkiewicz and Szmelter 2011 for a more recent review)
- octahedral reduced Gaussian grid, but the IFS-FVM formulation not restricted to this (Szmelter and Smolarkiewicz 2016)
- optional moving mesh capability (Kühnlein, Smolarkiewicz, Dörnbrack 2012)
- · coupling of IFS physics parametrizations using Euler forward approach (see below)

median-dual finite-volume approach

terrain-following coordinate

Summary of the main formulation features of IFS-FVM and IFS-ST:

Model aspect	IFS-FVM	IFS-ST	IFS-ST (NH option)	
Equation system	fully compressible	hydrostatic primitive	fully compressible	
Prognostic variables	ρ_d , u, v, w, θ' , r_v , r_l , r_r , r_i , r_s	$p_s, u, v, T_v, q_v, q_l, q_r, q_i, q_s$	$\pi_{s}, u, v, d_{4}, T_{v}, q_{v}, q_{1}, q_{r}, q_{i}, q_{s}$	
Horizontal coordinates	λ, ϕ (lon-lat)	λ, ϕ (lon-lat)	λ, ϕ (lon-lat)	
Vertical coordinate	generalized height	hybrid η -pressure	hybrid η -pressure	
Horizontal discretization	unstructured finite-volume (FV)	spectral-transform (ST)	spectral-transform (ST)	
Vertical discretization	structured FD/FV	structured FE	structured FD/FE	
Horizontal staggering	co-located	co-located	co-located	
Vertical staggering	co-located	co-located	co-located/Lorenz	
Horizontal grid	octahedral Gaussian/arbitrary	octahedral Gaussian	octahedral Gaussian	
Time-stepping scheme	2-TL SI	2-TL constant-coefficient SI	2-TL constant-coefficient SI	
Advection	conservative FV Eulerian	non-conservative SL	non-conservative SL	

Octahedral reduced Gaussian grid

Nodes of octahedral grid O24

Spacing of dual mesh O1280

- suitable for spherical harmonics transforms applied in spectral IFS
- ⇒ finite-volume and spectral-transform IFS can operate on same quasi-uniform horizontal grid
- → Malardel et al. ECMWF Newsletter 2016, Smolarkiewicz et al. 2016
- \rightarrow operational at ECMWF with HRES and ENS since March 2016
- Mesh generator and parallel data structures for IFS-FVM provided by ECMWF's Atlas framework (Deconinck et al. 2017)

Primary mesh about nodes of octahedral grid O24 in IFS-FVM

Governing fully compressible equations in IFS-FVM

Building on (Smolarkiewicz, Kühnlein, Grabowski 2017), flux-form fully compressible equations with moist-precipitating processes and IFS physics parametrizations (Kühnlein et al. *in prep.*):

$$\begin{split} &\frac{\partial\mathcal{G}\rho_{d}}{\partial t} + \nabla\cdot\left(\mathbf{v}\mathcal{G}\rho_{d}\right) = 0 \ , \\ &\frac{\partial\mathcal{G}\rho_{d}\mathbf{u}}{\partial t} + \nabla\cdot\left(\mathbf{v}\mathcal{G}\rho_{d}\mathbf{u}\right) = \mathcal{G}\rho_{d}\left[-\theta_{\rho}\widetilde{\mathbf{G}}\nabla\varphi' + \mathbf{g}\mathcal{B} - \mathbf{f}\times\left(\mathbf{u} - \frac{\theta_{\rho}}{\theta_{\rho a}}\mathbf{u}_{a}\right) + \mathcal{M}' + \mathbf{P}^{\mathbf{u}}\right] \ , \\ &\frac{\partial\mathcal{G}\rho_{d}\theta'}{\partial t} + \nabla\cdot\left(\mathbf{v}\mathcal{G}\rho_{d}\theta'\right) = \mathcal{G}\rho_{d}\left[-\widetilde{\mathbf{G}}^{T}\mathbf{u}\cdot\nabla\theta_{a} + \mathcal{P}^{\theta'}\right] \ , \\ &\frac{\partial\mathcal{G}\rho_{d}r_{k}}{\partial t} + \nabla\cdot\left(\mathbf{v}\mathcal{G}\rho_{d}r_{k}\right) = \mathcal{G}\rho_{d}\mathcal{P}^{r_{k}} \quad \text{where} \quad r_{k} = r_{v}, r_{l}, r_{r}, r_{i}, r_{s} \ , \\ &\frac{\partial\mathcal{G}\rho_{d}\Lambda_{a}}{\partial t} + \nabla\cdot\left(\mathbf{v}\mathcal{G}\rho_{d}\Lambda_{a}\right) = \mathcal{G}\rho_{d}\mathcal{P}^{\Lambda_{a}} \ , \\ &\varphi' = c_{pd}\left[\left(\frac{R_{d}}{\rho_{0}}\rho_{d}\theta\left(1 + r_{v}/\varepsilon\right)\right)^{R_{d}/c_{vd}} - \pi_{a}\right] \ . \end{split}$$

with:

$$\mathbf{v} = \widetilde{\mathbf{G}}^T \mathbf{u} , \qquad \theta_\rho = \frac{\theta \left(1 + r_V/\varepsilon\right)}{\left(1 + r_t\right)} , \qquad \varepsilon = \frac{R_d}{R_v} , \qquad \theta' = \theta - \theta_a ,$$
$$\mathcal{B} = 1 - \frac{\theta_\rho}{\theta_{\rho a}} = 1 - \frac{\vartheta}{\theta_{\rho a}} \left(\theta_a + \theta'\right) , \qquad \vartheta \equiv \frac{1 + r_V/\varepsilon}{1 + r_t} , \qquad r_t = \sum_k r_k = r_v + r_l + r_r + r_i + r_s .$$

Integration of the fully compressible equations in IFS-FVM

Generalized transport equation:

$$\frac{\partial G\Psi}{\partial t} + \nabla \cdot (\mathbf{V}\Psi) = G \left(\mathcal{R}^{\Psi} + P^{\Psi} \right)$$

NFT template integration scheme:

$$\Psi_{\mathbf{i}}^{n+1} = \mathcal{A}_{\mathbf{i}}(\widetilde{\Psi}, \mathbf{V}^{n+1/2}, G^{n}, G^{n+1}, \delta t) + b^{\Psi} \, \delta t \, \mathcal{R}^{\Psi}|_{\mathbf{i}}^{n+1} \equiv \widehat{\Psi}_{\mathbf{i}} + b^{\Psi} \, \delta t \, \mathcal{R}^{\Psi}|_{\mathbf{i}}^{n+1}$$

where

$$\widetilde{\Psi} = \Psi^n + a^{\Psi} \, \delta t \, \mathcal{R}^{\Psi} |^n + \delta t \, P^{\Psi} |^n$$

and

$$P^{\Psi}|^{n} = P^{\Psi}(t_{phys}, \Delta t_{phys})$$
 where $\Delta t_{phys} = N_{s}\delta t$ and $(N_{s} = 1, 2, 3, ...)$

Prognostic variable	Ψ	v	G	aΨ	bΨ
Dry density	Ρd	vG	G	-	-
Zonal physical velocity	и	νGρd	$G \rho_d$	0.5	0.5
Meridional physical velocity	v	VGPd	GPd	0.5	0.5
Vertical physical velocity	w	vGpd	GPd	0.5	0.5
Potential temperature perturbation	θ'	vGpd	$G \rho_d$	0.5	0.5
Water vapor mixing ratio	r_V	νGρd	$G \rho_d$	-	-
Liquid water mixing ratio	rj	νGρd	$G \rho_d$	-	-
Rain water mixing ratio	rr	νGρd	$G \rho_d$	-	-
Ice mixing ratio	ri	VGPd	GPd	-	-
Snow mixing ratio	rs	νGρd	$G \rho_d$	-	-
Cloud fraction	Λa	VGPd	GPd	-	-
Exner pressure perturbation	φ'	vGpd	$G \rho_d$	0	1.0

 Finite-volume solutions can achieve accuracy of established spectral-transform IFS for planetary-scale baroclinic instability

 \Rightarrow Unsplit NFT advection

 \Rightarrow Directionally-split NFT advection

Moist baroclinic instability using IFS-FVM and IFS-ST with parametrization for large-scale condensation and diagnostic precipitation following Reed and Jablonowski 2011:

 Finite-volume solutions can achieve accuracy of established spectral-transform IFS for moist flows

Moist baroclinic instability using IFS-FVM and IFS-ST with parametrization for large-scale condensation and diagnostic precipitation following Reed and Jablonowski 2011:

 Finite-volume solutions can achieve accuracy of established spectral-transform IFS for moist flows

 \Rightarrow Dry simulation with split NFT advection

 \Rightarrow Moist simulation with split NFT advection

The IFS-FVM interface to the physics parametrizations also includes an option for subcycling of the dynamics. The template semi-implicit NFT scheme (shown on the previous slide) for one physics time step from t^N to $t^N + \Delta t_{phys} \equiv t^N + N_s \delta t$, can be written as $\ell = 1, N_s$:

$$\Psi_{\mathbf{i}}(t^{N}+\ell\delta t) = \mathcal{A}_{\mathbf{i}}(\widetilde{\Psi}, \mathbf{V}(t^{N}+(\ell\delta t-0.5)), G(t^{N}+(\ell-1)\delta t), G(t^{N}+\ell\delta t), \delta t) + b^{\Psi} \, \delta t \, \mathcal{R}_{\mathbf{i}}^{\Psi}(t^{N}+\ell\delta t) \, ,$$

where

$$\widetilde{\Psi} = \Psi \big(t^N + (\ell - 1) \delta t \big) + a^\Psi \, \delta t \, \mathcal{R}^\Psi \big(t^N + (\ell - 1) \delta t \big) + \delta t \, \mathcal{P}^\Psi \big(t^N, \Delta t_{\text{phys}} \big) \, \, .$$

The physics tendency P^{Ψ} is evaluated with the physics time step Δt_{phys} and is then reused for the N_s subcycling steps with δt .

Moist-precipitating baroclinic instability using IFS-FVM with IFS cloud parametrization (no subcycling versus subcycling of dynamics $N_s = 3$):

Moist-precipitating baroclinic instability using IFS-FVM with IFS cloud parametrization (no subcycling versus subcycling of dynamics $N_s = 3$):

Highlights:

- · IFS-FVM with generic interface to selected IFS physics parametrizations
- finite-volume versus spectral-transform semi-implicit integration schemes in geospherical framework with same grid, variable arrangement, parametrizations
- finite-volume semi-implicit integration of IFS-FVM can provide solution quality competitive to established spectral-transform IFS

Ongoing and outlook:

- · coupling of IFS-FVM to full IFS physics parametrization package
- · towards convection-permitting global medium-range weather forecasts
- combining methods of IFS-FVM and IFS-ST

Further reading:

- Kühnlein C., P. K. Smolarkiewicz, A. Dörnbrack, Modelling atmospheric flows with adaptive moving meshes., J. Comput. Phys., 2012.
- Szmelter J., P. K. Smolarkiewicz P.K, An edge-based unstructured mesh discretisation in a geospherical framework., J. Comput. Phys., 2010.
- Smolarkiewicz P.K., C. K
 ühnlein, N. P. Wedi, A discrete framework for consistent integrations of soundproof
 and compressible PDEs of atmospheric dynamics., J. Comput. Phys., 2014.
- Smolarkiewicz P.K., W. Deconinck, M. Hamrud, C. Kühnlein, G. Modzinski, J. Szmelter, N. P. Wedi, A finite-volume module for simulating global all-scale atmospheric flows., J. Comput. Phys., 2016.
- Kühnlein C., Smolarkiewicz P.K., An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics., J. Comput. Phys., 2017.
- Smolarkiewicz P.K., C. K
 ühnlein, W. W. Grabowski, A finite-volume module for cloud-resolving simulations
 of global all-scale atmospheric flows., J. Comput. Phys., 2017.
- Deconinck W., P. Bauer, M. Diamantakis, M. Hamrud, C. Kühnlein, G. Mengaldo, P. Marciel, T. Quintino, B. Raoult, P. K. Smolarkiewicz, N. P. Wedi, Atlas: The ECMWF framework to flexible numerical weather and climate modelling., https://doi.org/10.1016/j.cpc.2017.07.006, 2017.
- Waruszewski M., C. Kühnlein, H. Pawlowska, P. K. Smolarkiewicz, MPDATA: Third-order accuracy for arbitrary flows, in press, JCP.
- Smolarkiewicz P.K., C. K
 ühnlein, N. P. Wedi, Perturbation equations for all-scale atmospheric dynamics., submitted to J. Comput. Phys.
- Kühnlein C., S. Malardel, Smolarkiewicz P.K., Klein R., Wedi N.P., Finite-volume and spectral-transform formulations of IFS, in preparation for GMD

Some notes on IFS-FVM physics parametrization interface:

- implemented by first-order coupling at tⁿ, with option for subcycling the entire IFS-FVM semi-implicit dynamics
- coding incorporates relevant IFS physics routines in IFS-FVM bundle (setup, modules, phys_ec, surf, phys_radi,...)
- interface is at the level of ec_phys_drv.F90 (defined as ec_phys_drv_fvm.F90)
- example TODO's way-in/out: conversions between r_k's and q_k's, conversions related to height- versus
 pressure-based vertical coordinate, compute required quantities on interfaces, geometric quantities,...
- · coupling setup in vertical such that lowest full level in IFS-FVM corresponds to lowest full level in IFS-ST
- · no NPROMA blocks in IFS-FVM and Fortran pointers are used to flip vertical index in interface

