An Efficient Integrated Dynamics-Physics Coupling Strategy for Global Cloud-Resolving Models

S.-J. Lin, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton The concept of "Super Dynamics developed while sabbatical at RCEC, Academia Sinica, Taipei

- Feasibility, fidelity, and <u>accuracy</u> of FV3-GCRM for 10-day NWP (with 2016 FV3)
- The "Super Dynamics" project (2020 FV3)
 - An optimal combination of "grid-scale" dynamics with built-in "sub-grid" processes - embedding "column physics" within "dynamics"
 - To improve dynamics-physics interaction, and to enhance computational efficiency (enabling large-time-step integration, and better use of CPU-cache or accelerator)

Large-Time-Step demo: 2020 FV3 (3-km, Δt=225 sec)

3rd Workshop on Physics Dynamics Coupling, ECMWF, Reading, UK, July 10, 2018

Status of the "2016 FV3"

Weather Applications:

- The GFDL FV3 "dynamical core" was selected in **2016** as the "engine" for the Next Generation Global Prediction System (NGGPS)
- Since Jan 2018, NOAA is developing a Unified Forecast System (UFS) based on FV3 the unification between the Global models for 1) weather, 2) space weather, 3) S2S, and 4) regional forecast systems

Climate Applications:

• NASA GEOS and **all** NOAA/GFDL models for **IPCC** are based on the FV3

FV3: physically representing the atmosphere by finite control-volumes

- 1. Vertically Lagrangian control-volume discretization (Lin 2004)
 - Conservation laws solved for the control-volume bounded by two Lagrangian surfaces
- 2. Physically based forward-in-time "horizontal" transport (only "2D" between two Lagrangian surfaces)
 - Locally conservative and (optionally) monotonic via constraints on sub-grid distributions (Lin & Rood 1996; Putman & Lin 2007) – particularly good for aerosols and cloud micro-physics
 - Space-time discretization is non-separable -- hallmark of a physically based FV algorithm
- 3. Combined use of C & D staggering with optimal **Potential Vorticity** advection and **Helicity** representation

 \rightarrow important from TC-permitting (100-km) to tornado-permitting (1-km) scale

- 4. Finite-volume integration of pressure forces (Lin 1997)
 - Analogous to the forces acting upon an aircraft wing (lift & drag forces)
 - Horizontal and vertical influences are non-separable
- 5. Non-hydrostatic extension: the vertically Lagrangian discretization reduces the soundwave solver into a 1-D problem (solved by either a Riemann-Invariant method or a semiimplicit solver)

The FV3's C-D grid works like Yin-Yang

Helicity

A glimpse into the future of Numerical Weather Prediction?

Global cloud-resolving (3-km resolution, equivalent to <u>56 megapixels</u>) prediction with FV3

Source: http://www.jma.go.jp

FV3 initialized with IFS IC (courtesy of Linus Magnusson, ECMWF)

Can a FV3-powered GCRM compete with the best NWP model in the synoptic scale (200 km or larger)?

Experiment with ECMWF-IFS initial conditions (~ 9 km)

Period:

20150814 – 20160809 (twice per months, 24 cases total). IFS data at 9-km L137 data, courtesy of Linus Magnusson, ECMWF

Initialization:

- > Only the atmospheric state from the IFS is used
- The land properties and IC are interpolated from GFS

Model tuning:

- A climate-oriented tuning was performed with the GFDL cloud Micro-Physics
- Metrics for evaluation?
- > Let's start with the usual suspect: the Anomaly Correlation Coefficient of 500mb Height

"Calibrating" cloud condensates with ECMWF analyses and CloudSat

Magnusson, ECMWF)

Cloud ice (zonal mean)

500-mb Height ACC (synoptic scale >200 km)

Global Cloud-Permitting FV3-GFS (C3072_L63) vs. NCEP-GFS and ECMWF-IFS

Note: FV3-GFS at 13-km has slightly higher scores

2016 FV3: Forecast Experiment with GFS and ECMWF ICs

(August 2015 to August 2016, every 5^{th} day = 73 cases)

(ACC computed using EC method by Linus Magnusson, ECMWF)

 How well do ECMWF-IFS (9-km), NCEP-GFS (13-km), and FV3-GFS (9km) actually resolve the "meso-scale"?

- FV3 at C1152 (9-km) near perfectly catpures the 5/3" meso-beta (20-200 km) spectrum to 4-Δx
- The IFS has lower energy in the meso-scale; but it does follow "-3" spectrum (synoptic scale) well
- The GFS has the least amount of energy in the mesoscale (3 orders of magnitude smaller than FV3 and the theoretical value)

Super Dynamics project: A total redesign of the dynamics-physics coupling

- "Dynamics" and "physical parameterizations" are traditionally separated within a modeling framework
- Near the gray-zone (1-10 km), the dynamics needs to "see & feel" the water species (e.g., rain, snow, cloud water/ice) to allow better physics-dynamics interaction and for higher computational efficiency (by using only small-time-step for "fast physics")
- Traditional "column physics" should be (completely) rewritten without the "hydrostatic approximation"
- Heating/cooling should be applied to the "moist air", not "dry air" (as currently in GFS and GFDL AM-2/3/4), and in constant-volume, not constant pressure (isobaric)

Going for the extra mile: embedding "column physics" directly into the dynamics

The evolution of FV3


```
Project: 2020 FV3
```

2020 FV3:

- The rigid separation of "Dynamics" and "physical parameterizations" is detrimental to the modeling advancement. To improve physics-dynamics interaction, the legacy modeling system should be torn apart
- To achieve higher computational efficiency by using small-time-step for "fast physics" calling the sub-grid physics at the right place and with the right frequency

What's super about "super FV3"?

The 2016 (NGGPS) FV3 plus

- 1. Improved "dynamics": nearly non-diffusive advection scheme with a 2Δ -filter in physical space
- 2. "Fast-physics" (acoustic step):
 - a) "Naturally Scale Aware" (via finite-volume integration) flow-blocking by Sub-Grid Orography (SGO)
 - b) SGO-induced turbulence drag

c) SGO forced gravity-wave-drag for non-hydrostatic scale

3. "Intermediate-physics" (Lagrangian step):

a) Cloud microphysics with SGO effects

b) Shear-induced turbulence (a vertical mixing parameterization)

4. "Slow-physics": parameterized 3D solar radiation

work in progress

R

Main Loop

Remapping: Lagrangian to Eulerian Loop

Acoustic Loop

Hurricane Irma (2017)

Observations

2016 FV3 RMW = 54 km

 $PD + 2\Delta_f ilter$ tracer advection RMW = 28 km

A 2-way interactive 2-km nest, running parallel-in-time, with the global model at 13-km

Hurricane Matthew

0000 UTC 30 Sept 2016 (24 hour forecast) Infrared

FV3 2-km regional nest

GOES Infrared (credit: Jason Otkin)

13-km FV3 real-time forecast with "volcanic tracer"

Vertically independent Lagrangian tracer transport

- PD advection with 2△-filter
- Vertically independent variable time stepping
- Multi-tracer message passing, overlaying communication with computation

Other considerations

• Sub-grid "parameterization" should operate directly on the **native grid** used by the dynamics \rightarrow less re-gridding, less errors (and enhanced stability!)

 Traditional gravity wave drag parameterizations are not optimal, or perhaps wrong, if the horizontal resolution is between 1-10 km; let the non-hydrostatic core do its job !

• Hydrostatic vs non-hydrostatic physics: constant volume heating can better simulate vertically propagating gravity waves

Goal: utilizing the Sub-Grid Orography (SGO) to its fullest extent

The Earth's orography is precisely known to meter scale. We should be able to take advantage of the Sub-Grid Orography at any model horizontal resolution

(Lee, Liou, and Hall, 2011, JGR)

- The inline-SGO processes in the super FV3 is conceptually analogous to that of Lee, Liou, and Hall 2017 for "3D radiation"
- The "mountain blocking" was inspired by Lott and Miller (1997), but with more precise finite-volume integration (instead of making assumption on shape and blocking height)
- The FV3's SGO-induced turbulence was inspired by <u>Beljaars</u> et al. 2004: "A new parameterization of turbulent form drag". However, the FV3 SGO turbulent form drag is derived with the aide of "Buckingham Pi theorem"

Where did the "SGO blocking" idea come from?

The mountain drag (original idea developed by Lott & Miller 1997)

- Designed for hydrostatic model with hydrostatic assumption
- It is a "dynamical replacement" of the "envelop mountain" (Wallace 1983). The sub-grid terrain shape is assumed to be elliptical
- The flow goes over the mountain if H_n<1
- The flow is blocked if H_n> 1

OROGRAPHIC DRAG

The "super FV3" uses the 1-km sub-grid orography, regardless of the true resolution

GFDL MP is simpler than double moment schemes; but ...

GFDL cloud microphysics (6 species)

ECMWF cloud microphysics (5 species)

Some unique attributes of GFDL Cloud MP

- 1. 2016 FV3: phase-changes called after the "Lagrangian-to-Eulerian" remapping
- 2. 2020 FV3: cloud MP fully embedded, becoming part of "Super FV3"
- 3. Time-split between warm-rain and ice-phase (slower) processes
- 4. Time-implicit monotonic scheme for terminal fall of condensates
- 5. "Scale-awareness" achieved by an assumed horizontal sub-grid variability and a 2nd order FV vertical reconstruction for auto-conversions (ice ► snow)
- 6. Thermodynamic consistency between the dynamics and cloud micro physics:
 - * exact local moist energy conservation between phase changes
 - * condensates carry heat & 3D momentum

Mechanisms by which "sub-grid" mountains/hills affect precipitating clouds (Houze 2012)

Sub-Grid-Orography induced condensation/precipitation

Figure 3. Mechanisms by which mountains and hills affect precipitating clouds.

Evaluating the "Super FV3" across the Gray-Zone

The "DYAMOND Project" (https://www.esiwace.eu/services/dyamond)

- First International inter-comparison of global cloud-resolving models
- Participants:

FV3 (GFDL) FV3 (NASA/GMAO) NICAM ICON UM (UKMO) MPAS ARPEGE-NH SAM

DYAMOND model configurations (32-bit, Cray XC40)

	∆x (km)	deep Conv	big_∆t (sec) (Slow physics)	L2E (sec) (intermediate physics)	Acoustic (sec) (Fast-physics)	Cores needed to meet NWP requirement* (estimated, minimal I/O)
C768_L63*	13	ON	225	225	18.75	3,000
C768_L63	13	OFF	225	225	18.75	3,000
C1536_L91	6.5	OFF	225	112.5	9.375	30,000
C3072_L91	3.25	OFF	225	56.25	4.5	240,000

*Assumed NWP requirements: 10 days forecast in less than 100 min.

"Super FV3" project (2020 FV3)

A 40-day sub-seasonal prediction experiment at global 3.25 km resolution

OLR: 20180801-20160910

Anomaly Correlation Coefficient (ACC): 500-mb Height

Initialization: 1 Aug 2016

200-mb Kinetic Energy Spectra

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Future development path of FV3:

□ The "2020 FV3" project:

we are developing a nearly self-contained "super dynamics" with built-in Sub-Grid physics suitable for gray-zone (1-10 km), with a physics-dynamics interface re-designed for non-hydrostatic model

With the "super dynamics", a global cloudresolving model can be competitive (in large-scale) with today's best NWP model, and it may meet the computational requirement for operation in 3-5 years

