Calibration in ECMWF

24-h precipitation in dual ENS resolution forecast

Estibaliz Gascon

David Lavers, David Richardson, Martin Leutbecher, Zied Ben Bouallegue, Florian Pappenberguer, Tom Hamill (NOAA)

ECMWF

estibaliz.gascon@ecmwf.int

Why we should apply a calibration to the ensemble forecast?

- Raw precipitation forecasts are less useful than they could be because:
 - Imperfections in the prediction system.
 - Location-dependent and location-independent biases in the forecast
 - Biases may also differ between light and heavy precipitation events (i.e. overforecasting light precipitation and underforecasting the heavier)
- For these reasons, statistical postprocessing is often applied.
 - The method applied here is quantile mapping.
 (keep the spatial distribution of the field)

Figure adapted from Hamill et al. (2017)

Quantile mapping applied in ECMWF 24h-h precipitation

	and the second
DATABASES	ECMWF experiment
Observation/ analysis database	 EFAS (European Flood Awareness System) 24h precipitation 5 km analysis
	 20 years from 1996 to 2015
Supplemental locations	 50 supplemental locations for each grid point.
	• Based on <i>Hamill et al. (2017).</i>
	 Applied to 20 years of EFAS 5km precipitation analysis
	 Re-forecast interpolated to 5 km.
Reforecast database for quantile mapping	 50 supplemental locations.
	 20 years x 9 runs x 50 sup.loc x 1 cf = 9000 samples
Climatology database for quantile mapping	EFAS 24h precipitation

• 50 sup.loc x 20 years x 9 runs = 9000 samples

Dual ENS calibration tests

- 24h total precipitation June, July and August
 2016 across Europe
- EFAS 24h precipitation at SYNOP locations.
- Lead times day 1 ,3, 5, 7 and 10
- Verify the ENS combinations (0,201), (10,160), (20,120), (40,40) and (51,0)

Supplemental locations (based on the method from Hamill et al. (2017)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

CRPS

- Better CRPS for all lead times and all ENS combinations, most significant in shorter lead times.
- (0, 51) and (40,40) are the best combinations, in both, RAW and CALIBRATED forecasts.
- Quite similar score values for all the combinations at lead times equal or longer than 5 days.

Reliability

- Reliability improves after the calibration at least up to day 10 lead time and different PPT24 thresholds.
- Similar results in the current operational ENS system
 (0,51) than the dual ensemble combinations (i.e. 40,40)

Day 10 PPT24>0.1 mm

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

ROC curves

- Forecast skill improves after the calibration at least up to day 10 lead time and different PPT24 thresholds.
- Similar results in the current operational system (0,51) than the dual ensemble combinations (i.e. 40,40).

Relative economic value

- Higher relative economic value in the calibrated forecast than in the raw forecast, at least up to 5 mm threshold and for all the lead times.
- A greater number of users with different C/L can benefit from the calibrated forecast, compared to the raw forecast.

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

CONCLUSIONS

- For all lead times and combinations, the calibrated forecast has better and resolution
- This calibration especially improves the forecast of low 24-h precipitation thresholds
- CRPS score shows that the most skilful combination is (40,40); however, the scores are similar to operational system.
- All the combinations have similar values in terms of reliability, skill or relative economic value.