Evaluation of IFS surface radiation from the ground and satellite

Thomas Haiden

Overview

- Monitoring of radiation biases (BSRN)
- Attribution of 2m temperature biases (SYNOP, BSRN, CM SAF)
- Evaluation of cloud/radiation predictability (CM SAF)
- Scale-dependence of cloud/radiation forecast skill (CM SAF)
- Summary

Baseline Surface Radiation Network

BSRN station Lindenberg (Germany)

SW bias ~0 Wm⁻² LW bias -5 Wm⁻² e.g. Cabauw (Netherlands) Lindenberg (Germany) Palaiseau (France) Toravere (Estonia) Tateno (Japan) Florianopolis (Brazil)

5-15 Wm⁻² underestimation of LW flux except Minami-Torishima (Pacific)

0-15 Wm⁻² overestimation of SW flux

2m temperature, bias, DJF 2017-18

Total cloud cover, bias, DJF 2017-18

T2m Bias DJF 2016-17 00UTC, dependence on cloud error

T2m Bias DJF 2016-17 00UTC, dependence on cloud error

CECMWF

Bias in downward solar radiation at the surface, NDJ 2017-18

Solar flux downward, bias NDJ 2017-18 12UTC, dependence on cloud error

Solar flux downward, bias NDJ 2017-18 12UTC, dependence on cloud error

CECMWF

Longwave flux error: dependence on cloud error (BSRN Lindenberg)

Solar radiation predictability

Cloud and solar radiation forecast skill

ECMWF Newsletter No 143 (2015)

Forecast skill horizon of downward solar radiation

Skill horizon (ACC<0.3)

Observed variability (sub-monthly)

Seasonal changes in large-scale error characteristics

Normalized downward solar radiation (7 Oct 2016)

Large area of closed-cell convection

SEVIRI Ch1 - 7 Oct 2016 12 UTC

1 -0.8 -0.6 -0.4 -0.2 -0.1 0.1 0.2 0.4 0.6 0.8

Cloud fraction: forecast 00 UTC +12 h

Aqua / MODIS - 7 Oct 2016

Aqua / MODIS - 7 Oct 2016

Error evolution

K. Lonitz

٠

•

•

•

.

Solar radiation - activity

Standard deviation of obs and fcst (2012-2016) - activity

ь

Difference and ratio of standard deviations (activities)

North Atlantic near Greenland [45W,50N]

Conditional bias:

← Cloud radiative effect too weak when less cloudy

\leftarrow Cloud radiative effect too strong when cloudier

Evolution of activity with lead time

Scale-dependence of forecast skill

Downward solar radiation, anomaly correlation

ACC at 16 km

ACC at 80 km

Downward solar radiation, anomaly correlation

ACC at 16 km

ACC at 300 km

Downward solar radiation, anomaly correlation

ACC at 16 km

ACC(300 km) – ACC(16 km)

Summary

- BSRN: consistent biases in sw (+) and lw (-) in IFS across regions
- SYNOP downward solar: good agreement with satellite data
- Wintertime T2m biases at least partly due to lack of cloud cover/optical depth
- Subtropical South Atlantic has shortest forecast skill horizon for cloudiness
- Skill already low at day $1 \rightarrow$ assimilation issue?
- Substantial drop in skill from 300 km to 16 km, more than in the Southern Ocean

Forecast skill horizon for downward solar radiation

Skill horizon (ACC<0.3)

Annual precipitation

Forecast skill horizon for downward solar radiation

Skill horizon

Topography