Modelling Non-LTE effects

Manuel López-Puertas IAA-CSIC, Granada, Spain (puertas@iaa.es)

Collaborators:

UNSTITUTO de ASTROVISION

Bernd Funke (IAA), Marty Mlynczak (NASA Langley), Marco Matricardi (ECMWF)

Radiation WS, 21-24 May 2018, ECMWF, Reading

Outline

- Introduction to Non-LTE
- Retrieval of temperature and species under non-LTE:
 - Limb emission IR sensors: MIPAS, SABER
 - Nadir emission IR sensors: AIRS, IASI
- Non-LTE in heating/cooling rates:
 - Near-IR CO2 heating
 - Non-LTE IR cooling (CO2, O3, H2O, NO, O) (mesosphere & thermosphere)
 - Parameterizations for GCMS
- Summary/Future prospects

Introduction to non-LTE

NLTE: Basics (I)

- Gas parcel (atoms+molecules)
- Three energies at work: kinetic; internal (rot., vib., elec.); and radiation

- Thermodynamic Equilibrium (TE)
 - ► A gas parcel enclosed and isolated => Therm. Equil., T
 - Molecular velocities: Maxwell distribution
 - Excited states: Boltzmann law
 - Radiation properties: $k_v(T)$, $J_v(T)=B_v(T)$
 - Radiative field: Planck function, $B_v(T)$

NLTE: Basics (II)

• Local Thermodynamic Equilibrium (LTE)

- In the atmosphere a kinetic (translational) a **local** $T_k(z)$ can be defined
- Molecular velocities: Maxwell distribution at $T_k(z)$
- Excited states: Boltzmann relation at $T_k(z)$, e.g.

$$\frac{n_1}{n_0} = \frac{g_1}{g_0} \exp\left(-\frac{hv}{k T_k(z)}\right)$$

- Radiation properties: $k_v(T_k)$, $J_v = B_v(T_k)$
- Radiative field is NOT described by $B_v(T_k)$

• Non-Local Thermodynamic Equilibrium (NLTE)

- A translational $T_k(z)$ is also defined
- Excited states: Boltzmann relation at $T_v(z)$, e.g.

$$\frac{n_1}{n_0} = \frac{g_1}{g_0} \exp\left(-\frac{h}{k T_v(z)}\right)$$

- Radiation properties: $k_v(T_k, T_v), J_v = B_v(T_v)$
- Radiative field is NOT described by $B_v(T_k)$

Non-LTE: A two-levels system (I)

TTUTO de ASTROFI

Non-LTE: A two-levels system (II)

• Statistical Equilibrium Equation (SEE)

$$\frac{n_1(z)}{n_0(z)} = \frac{B_{01}\overline{L}(z) + p_T(z) + p_{NT}}{A_{10} + l_T + l_{NT}}$$

$$\overline{L}(z) = \frac{1}{2K} \int_{-1}^{+1} \int_{\Delta v} L(z, \mu, v) \ k(z, v) \ dv \ d\mu$$

• Radiative transfer equation (RTE)

$$\frac{dL(z,\mu,v)}{dz} = -\frac{k(z,v)}{\mu} \Big[L(z,\mu,v) - J(z,v) -$$

=> Output: Non-LTE populations $n_1(z)$, and Heating/Cooling rates h(z)

$$h(z) = 4\pi S n_a \left[\overline{L}_{\Delta v}(z) - J(z) \right]$$

 Multilevel case of n energy levels and m bands, we need to solve the coupled system of n (SSE) x m (RTE) equations

Non-LTE: Basic facts, examples

$$\frac{n_1}{n_0} = \frac{B_{01}\overline{L} + p_T + p_{NT}}{A_{10} + l_T + l_{NT}} = \frac{g_1}{g_0} \exp\left(-\frac{h\nu}{k T_V}\right)$$

- Thermal collisions keep pop. levels in LTE
- NLTE occurs mainly: I) At high altitudes
 2) For shorter- λ bands
- It can be caused by:
 - Radiative processes, mainly,
 - Spontaneous emission to space
 - Absorption of radiation: Solar (near-IR), Atmospheric radiation
 - Non-Thermal collisional processes (e.g., V-V, E-Vibrational, etc.)
 - Chemical recombination; Photochemical reactions.

López-Puertas & Funke, Encycl. Atmos. Sci., 2015.

Retrievals from non-LTE IR emissions (limb sensors)

Non-LTE retrievals

- Retrievals of atmospheric parameters (temperature, species abundances) from non-LTE IR emissions
 - => A big step forward in last 15 years (SABER and MIPAS)
 - => In IR retrieval non-LTE seen as a "problem"; but very useful for many species (high SNR)
 - => Mainly in emission IR experiments
 - => Requires good knowledge of non-LTE processes

SABER instrument

- Limb viewing, 400 km to Earth's surface
- Ten channels radiometer (1.27-16 µm)
 - CO2 at 14.9 & 15.3 µm (Temperature)
 - O3 at 9.6 μm (O3)
 - O2(¹ ∆ g) I.27 µm (O3)
 - CO2 at 4.3 μm (CO2)
 - OH(v) I.6 and 2.0 µm (O, H)
 - NO 5.3 μm (NO cooling)
 - H2O 6.9 μm (H2O)
- Over 30 routine data products, Temperature, O3, CO2, and NO and CO2 cooling rates (+ H2O, in progress)
- Over 15 years in-orbit !!!

75 kg, 77 watts, 77 x 104 x 63 cm, 4 kbs

Temperature inversion (non-LTE) (SABER)

02792_43

-20 - 10

0

SABER-Lidar

10

20

SABER temperatures: Effect of K_{CO2-O}

Current uncertainties in K_{co2-o}: 10-20 K @ 100 km

García-Comas et al., JGR, 2008

Strat-Warm: Elevated Stratopause

Stratopause in 2002-2013 NH pol. winters

MIPAS

Spectral resolution (apodized): 0.035-0.0625 cm⁻¹

- Michelson interferometer with very high spectral resolution (0.035-0.0625 cm⁻¹)
- Wide coverage (15-4.3 μm); High sensitivity (30-3 nW/(cm² sr cm⁻¹))
- Global (pole-to-pole) and temporal (day & night) coverage, 5 km to 170 km
- Nominal mode (5-70 km) + Middle and Upper atmosphere modes (20-100km; 40-170km)
- Very useful for investigating non-LTE processes

MIPAS non-LTE retrieval scheme

A non-LTE model (GRANADA)

 Calculate Tvibs, Trot, Tspin for all important IR emitters (CO₂, H₂O, O₃, N₂O, CO, CH₄, NO, NO₂, HNO₃, OH)

A forward NLTE code (KOPRA)

- Radiance (limb, nadir)
- Jacobians, if NLTE (Tvibs) parameters are retrieved (i.e., derivatives of radiances and populations wrt non-LTE parameters)

Species retrieved in non-LTE from MIPAS MA+UA modes

SPECIES	Spectral Range [µm]	Altitudes [km]	Reference/Comment
Temperature	15	20-100	García-Comas et al. ACP, 2012; 2014
O ₃ [vmr]	12.8, 9.6	20-100	López-Puertas et al., AMT, 2018
H ₂ O [vmr]	12.5, 6.3	20-90	García-Comas et al. (in prep.)
NO [vmr]	5.3	20-100	Funke et al. (2005a,b; 2014a,b; 2016)
NO ₂ [vmr]	6.3	20-60	Funke et al. (2005a,b; 2014a,b; 2016)
CH ₄ [vmr]	7.8	20-75	
N ₂ O [vmr]	7.8	20-55	Funke et al. ACP, 2008.
Temp. & NO [vmr] Therm.	5.3	105-170	Bermejo-Pantaleón et al., JGR, 2011.
CO [vmr]	4.7	20-150	Funke et al. (2007; 2009)
CO ₂ [vmr]	10, 4.3	70-110	Jurado-Navarro etal., AMT, 2016; López-Puertas et al., 2017)

M. López-Puertas

Rad. WS, 23 May 2018, ECMWF, Reading -

NOy: Energetic Particles Precipitation (EPP)

Figure 1. Temporal evolution of the EPP-NO_v VMR at (top) 70–90°S and (bottom) 70–90°N during the Envisat mission lifetime (July 2002 to March 2012).

- Stratospheric and mesospheric reactive nitrogen (NOy) produced by EPP for the MIPAS 10 years record (Funke et al., JGR, 2014).
- NOy descends down to 23 km
- Transport from the lower thermosphere down to the stratosphere depends very much on GW activity
- Effects on O3

EPP: a solar coupling pathway

Geomagnetic forcing follows solar cycle, but 2-3 years lagged

Retrievals from non-LTE emissions (nadir sensors)

IASI Temp. Inver. from 4.3 µm Nadir rad.

Matricardi et al., JGR, 2018

IASI Temp. Inver. @4.3 µm: Still some problems

M. López-Puertas

Rad. WS, 23 May 2018, ECMWF, Reading -

Matricardi et al., JGR, 2018

Near-IR Heating rates

CO2 NIR Heating. Energy pathways

Rad. WS, 23 May 2018, ECMWF, Reading

CO2 NIR Heating rates: Contributions

M. López-Puertas

Rad. WS, 23 May 2018, ECMWF, Reading

López-Puertas et al., JAS, 1990

CO2 NIR Heating rates: CMAM model

Results in a significant warming (2-8
K) of the mesosphere.

Fomichev et al., GRL, 2004

CO2 NIR Heating: Parameterizations for GCMs

- Ogibalov & Fomichev, AdvSR, 2003; Fomichev et al., 2004
- A simple approach.: h(p,SZA) = f(CO2 vmr(p), CO2 Column above p).
- Accurate (~10%) for current CO2 but systematic underestimation (~0.1-0.2K/day) for 2xCO2

Cooling rates

Cooling rates

UTO de ASTRO

Rad. WS, 23 May 2018, ECMWF, Reading

CO2 15 µm Cooling rates

CO2 15 µm cooling rates: Distributions

- FB: Fundamental band
- HOT: 10 bands
- ISO: 3 bands
- Depend very much on the Temp. structure

López-Puertas & Taylor, 2001

M. López-Puertas

Non-LTE Cooling rates

CO2 15 µm CR: parameterizations

- Fomichev et al., JGR, 1998
- Explicit dependencies on T, composition, CO2 + col. rates
- 6 ref. p-T atmospheres

• NLTE: Fundamental band ONLY

• Cool-to-space + Contribution of the adjacent layer below

~93 km

- Only fundamental band. Rad. from upper layers included. Extended Recurrence formula
- Several bands but in NLTE.
- Use of LTE method, corrected for NLTE

~70 km

⊷85 km

- LTE: Curtis matrix par. Including Temp. dependence explicitly (no interpolation)
- Many bands included

$$h(z_0) = \sum_j [a_j(z_0) + b_j(z_0)\varphi_0]\varphi_j \quad \text{with } \varphi_j = \exp(-\frac{hv}{kT_j})$$

CO2 15 µm CR: parameterizations

CSIC + FOR

- Fomichev et al., 1998. Errors in the parameterization.
- Good overall accuracy
- Significant errors in the pol. summer mesopause
- Larger for 720 ppmv

Possible improvements:

- Strat-warm T-profiles properly handled?
- Merging LTE/NLTE altitude is too high for strat-warm T-profiles?
- Need to be extended for 4xCO2

Other Cooling rates (O3, H2O, NO, O)

CSIC +

O3 9.6 µm cooling rates

GRANADA NLTE model (Funke et al., JQSRT, 2012)

- Calculations for 48 ref. atmospheres
- O3 Heating important at night ~90-95 km
- Fomichev & Blanchet (1995) developed a parameterization for O3 9.6 µm (LTE)

M. López-Puertas

Non-ETL effects in O3 9.6µm cooling

López-Puertas & Taylor, 2001

H2O 6.3 µm cooling rates

GRANADA NLTE model (Funke et al., JQSRT, 2012)

Non-ETL effects in H2O 6.3µm cooling

López-Puertas & Taylor, 2001

NO 5.3 µm cooling rates

- Nitric oxide at 5.3 μ m is the major cooling of the thermosphere.
- It is very variable, T, NO, O; Day/Night; Geomagnetic storms, Solar cycle
- Easy to compute

$$\boldsymbol{q} = [\text{NO}] \frac{k_{NO-O} \ [\text{O}]}{A + k_{NO-O} \ [\text{O}]} \exp(-\frac{h\nu_0}{kT}) \ A \ h\nu_0$$

- $k_{NO-O} = 2.8 6.8 \ 10^{-11} \ cm^3 s^{-1}$ (most recent accepted 4.2 $10^{-11} \ cm^3 \ s^{-1}$ (Hwang et al., 2004))
- Very small contribution from the hot NO(2-1) band

O 63 µm cooling rate

- It produces a significant cooling in the upper thermosphere (~>200km)
- The increase with altitude is mainly due to increase in O vmr, not T
- Can be considered in LTE up to very high in the thermosphere but needs to be treated with rad. transfer

López-Puertas & Taylor, 2001

Summary (non-LTE retrieval) (1/3)

- MIPAS (& SABER) have substantially improved our knowledge of non-LTE
 - First detections of NLTE in CH4(v4), N2O(001), CO(2)
 - Improved NLTE in: H2O(020), NO2(v3=1, v3>1), O3(v1,v2,v3), NO (spin & rot. temp., nascent vib. distributions),
 - New NLTE CO2-related collisional parameters, NO⁺
- NLTE retrievals in the middle & upper atmosphere: A big step forward
 - Temperature (20-160 km) and CO₂ vmr (70 -140 km)
 - O₃, H₂O, CH₄, CO, NO, NO₂ (up to 100, 90, 75, 140, 170, 70 km)
- They have contributed to improve significantly our knowledge of the atmosphere:
 - Downward transport in polar regions, Thermosphere-Meso-Strat coupling, NOy budget, Solar storm composition changes, CO2 evolution
- Radiative transfer validation performed => Non-LTE models agree within IK

Future prospects (non-LTE retrieval) (2/3)

- To improve the accuracy of non-LTE retrievals:
 - To know more accurately the energy transfer (V-T) and V-V rates:
 - K _{CO2-O}: CO2(v2) + O ⇔ CO2 + O (**)
 - $K_{vv:} CO2^{i}(v2) + CO2^{i}(v2') \Leftrightarrow CO2^{i}(v2-1) + CO2^{i}(v2'+1)$
 - $K_{vv:}$ H2O(v2) + O2 \Leftrightarrow H2O(v2-1) + O2(1)
 - K vt: O2(I) + O ⇔ O2 + O
 - K_{V-T} & K_{V-V} rates at low (summer) temperatures (100-150 K)
 - To measure simultaneously atomic oxygen
- Understand CO2 4.3 µm daytime Nadir non-LTE emission (IASI) at winter (high SZAs) conditions

Summary & prospects (Cooling/Heating) (3/3)

- Non-LTE processes are required for the NIR and IR heating/cooling rates (energy budget) of the upper mesosphere and above.
- Improve the CO2 NIR heating parameterization for 2xCO2 and extent it to larger (4x) CO2.
- Parameterizations of CO2 non-LTE cooling exist but need extensions to larger 4xCO2 vmrs and other temperature structures (polar summer, strat-warm)
- Large uncertainty in the K(CO2-O) rate
- Lack of measurements of O
- Include O3 NLTE cooling in the mesosphere

Thank you!

Non-LTE retrieval algorithm

Non-LTE model: Generic RAdiative traNsfer AnD non-LTE population Algoritm (GRANADA)

- Calculation of rotational and vibrational populations and their derivitavies wrt the NLTE retrieval parameters
- Generalized scheme: used for populations of CO₂, O₃, CO, NO, NO₂, H₂O, CH₄, HCN,...
- User-defined (states and transitions, altitude range, iteration strategies, process definition, etc.)
- Rotational (and spin-orbit) non-LTE
- Line-by-line and line independent radiative transfer (KOPRA)
- Inversion of multilevel steady state equation with the Lambda iteration or Curtis matrix formalisms

Non-LTE effect: Radiances (emission)

 Radiance (emission) measurements: Effects on temperature and species abundances

Radiancia en ETL:

$$R(h) = \int_{LOS} B(x, \nu_0) \frac{d\tau^{LTE}(x)}{dx} dx$$

$$\tau^{LTE}(x) = \int_{\nu} F(\nu) \exp[-\int_{x'} k^{LTE}(x',\nu) n_0(x') dx'] d\nu$$

Radiancia en no-ETL:

$$\begin{split} R(h) &= \int_{LOS} J(x,\nu_0) \frac{d\tau(x)}{dx} dx; \quad J(\nu_0) \simeq \frac{2h\nu^3}{c^2} \frac{g_0 n_1}{g_1 n_0} = \frac{2h\nu^3}{c^2} \exp\left(-\frac{h\nu}{kT_v}\right) \\ \frac{k(x,\nu)}{k^{LTE}(x,\nu)} &= \frac{n_0}{n_0^{LTE}} \frac{[1 - \exp(-h\nu/kT_v)]}{[1 - \exp(-h\nu/kT)]} \\ \end{split}$$
(López-Puertas & Taylor, WSP, 2001)

TUTO de ASTRON

The GRANADA model

- GRANADA: Generic RAdiative traNsfer AnD non-LTE population Algorithm
- Calculation of rotational and vibrational populations and their derivatives w.r.t. the NLTE retrieval parameters
- Generalized scheme: same algorithm used for populations of CO₂, O₃, CO, NO, NO₂, H₂O, CH₄, HCN,...
- User-defined (states and transitions, altitude range, iteration strategies, process definition, etc.)
- Rotational (and spin-orbit) non-LTE
- Line-by-line and line independent radiative transfer (KOPRA)
- Inversion of multilevel steady state equation with the Lambdaiteration or Curtis matrix formalisms
- Cooling/Heating rates

The GRANADA non-LTE model: Earth

- Produced a climatology (0-200 km) of non-LTE populations for:
 - I3 species (H₂O, CO₂, O₃, N₂O, CO, CH₄, O₂, NO, NO₂, HNO₃, OH, N₂ & HCN)
 - 425 vibrational or electronic energy levels
 - 48 ref. atmos. (Jan, Apr, Jul, Oct) x (75°S, 45°S, 10°S, 10°N, 45°N, 75°N)
 x (Day, Night)
 - http://w3.iaa.es/~puertas/granada.html.
- Major Heating/Cooling rates
- Includes the <u>most updated collisional processes and rate coefficients</u> for the Earth's atmospheric molecules
- Funke et al., JQSRT, 2012

Earth

- Vib. Temperatures calculated for:
 - H2O: 21 levels (1.1-6.3 μm)
 - CO2: 129 levels (1.3-15 μm)
 - O3: 104 levels (1-6-14.8 μm)
 - N2O: 41 levels (2-15 μm)
 - CO: 4 levels (2.3-4.7 μm)
 - CH4: 12 levels (1.6-7.6 μm)
 - O2: 19 levels (0.63-6.4 μm)
 - NO: 10 levels (1.36-5.3 μm)
 - NO2: 7 levels (1-6.3 μm)
 - HNO3: 8 levels (5.8-20 μm)
 - OH: 18 levels (v=1,9, 1/2 and 3/2) (0.35-4 μm)
 - HCN: 25 energy levels (1.4-14 μm)
- Nadir, Limb simulations and Inversion of species in the mid-IR

(López-Puertas et al., 2005a,b; Funke et al., 2005a,b; 2007, 2009; Gil-López et al., 2005, etc.)

KOPRA

Karlsruhe Optimised and Precise Radiative transfer Algorithm. Line-by-line atmospheric radiative transfer code (Stiller et al., 2002) (http://www.imk-asf.kit.edu/english/312.php)

- Spatial discretization / observational geometries
 - Limb/Nadir/Solar occultation
 - Treatment of horizontal inhomogeneities (3D rad. transfer)
 - Refraction
- Radiative transfer
 - Rotational and vibrational Non-LTE (population model GRANADA implicitly included) (Funke et al., 2007)
 - Single scattering, using provided scattering and extinction coefficients or using the internal Mie model (spherical particles) (Hoepfner et al., 2005)
 - Surface reflection
 - CO2 line mixing (Funke et al., 1998)
 - Empirical solar spectral model (SO) (Hase et al., 1996)
 - Analytical calculations of Jacobians
- Instrumental modeling
 - Vertical FOV
 - ILS model input needed