Utilizing Gauss-Legendre Quadrature for Computation of Radiative Fluxes in Atmospheric Models

Howard W. Barker Jiangnan Li Jason Cole

Environment and Environmement et Climate Change Canada Changement Climatique Canada

Utilizing Gauss-Legendre Quadrature for Computation of Radiative Fluxes in Atmospheric Models

Howard W. Barker Jiangnan Li Jason Cole

- Canada Changement Chinatique Canad
- GCMs RT models (Li and Barker 2018):
 - sort stochastic CWP... low-order GLQ... SW and LW operate on common atmos.
 - reduce noise for NET fluxes... boundary fluxes OK; HRs not so much

Utilizing Gauss-Legendre Quadrature for Computation of Radiative Fluxes in Atmospheric Models

Howard W. Barker Jiangnan Li Jason Cole

- GCMs RT models (Li and Barker 2018):
 - sort stochastic CWP... low-order GLQ... SW and LW operate on common atmos.
 - reduce noise for NET fluxes... boundary fluxes OK; HRs not so much
- State-of-the-art LESs, CSRMs, NWP models run routinely using:
 - domain sizes..... 50 1,000 km
 - grid-spacings.... $0.1 1.0 \text{ km}... 10^5 10^7 \text{ columns}$
 - *N* layers..... 64 256
 - 1D RT in ICA.... yes
 - RT timesteps..... every 15 30 dynamics timesteps
 - RT of total CPU... 15 35%
- an attempt at a catastrophic reduction of CPU time consumed by RT algorithms

(per. comm. S. Krueger, J. Manners, P. Vaillancourt, 2018)

Dealing with RT's CPU demand

- 1. full ICA... but only every *N* dynamics timesteps (probably the most common?)
- 2. full ICA... as in (1) but intermediate steps using CRE bands only (Manners et al.)
- 3. ICA... employing stochastic spectral sampling (Pincus et al.)

Goal:

Full-resolution (time, space, spectra) Q_{rad} using much less CPU time than the above methods and resulting in simulated (cloud) properties that differ insignificantly from those obtained with the full-ICA.

- Towards the modelling "chasm" as described by Lawrence et al. (2018)
- NB. still adhering to the1D-ICA paradigm...

Something to bear in mind...

Is moving to 3D RT considered to be intractable or unwarranted?

Something to bear in mind...

Is moving to 3D RT considered to be intractable or unwarranted?

Wm

1. Partitioning a domain's columns

Partition into sub-domains such that radiative flux profiles are "distinctive"

cf. K-means

** $max(Q_{rad})$ near cloudtops exposed-to-space

2. Sort columns within partitions

Partition into sub-domains such that radiative flux profiles are "distinctive"

cf. K-means

32.6%

** $max(Q_{rad})$ near cloudtops exposed-to-space

5: cloudtops < 5 km

$$\langle F \rangle = \frac{1}{N} \sum_{n=1}^{N} F(n) \quad \text{full ICA}$$

$$= \frac{\sum_{m=1}^{M} \mathcal{N}_{s}(m) \left[\frac{1}{\mathcal{N}_{s}(m)} \sum_{n=1}^{\mathcal{N}_{s}(m)} F_{m}(n) \right]}{\sum_{m=1}^{M} \mathcal{N}_{s}(m)} = \frac{\sum_{m=1}^{M} \mathcal{N}_{s}(m) \langle F_{m} \rangle}{\sum_{m=1}^{M} \mathcal{N}_{s}(m)}$$

partitioned into ${\cal M}$ categories

for each partition, sort and index according to CWP

$$s_{m,n} = rac{n-1}{\mathcal{N}_s(m)-1}; \quad n = 1, \dots, \mathcal{N}_s(m)$$

 $\langle F_m \rangle = \int_0^1 F(s_m) \mathrm{d}s_m$

3. Apply GLQ to sorted partitions

 $\langle F \rangle = \frac{1}{\mathcal{N}} \sum_{i=1}^{N} F(n)$ full ICA

Partition into sub-domains such that radiative flux profiles are "distinctive"

cf. K-means

2. Sort columns within partitions

4. Associate and distribute $F(s_{m,n})$

 $\langle F \rangle = \frac{1}{N} \sum_{n=1}^{N} F(n)$ full ICA

Partition into sub-domains such that radiative flux profiles are "distinctive"

cf. K-means

A stringent test: Deep tropical convection

M. Khairoutdinov (2005)

- 0.1 km horizontal grid-spacing
- 1536 x 1536 = 2,359,296 columns
- 76 layers from 0 to 20 km; 15 layers from 20 to 100 km
- uniform ocean surface
- $-\mu_0 = 0.5$
- total cloud fraction = 0.58... 1,368,082 cloudy columns
- partition according to CTES... $max(Q_{rad})$

cloudtop altitude (km)

	I		1	1		I	I	I	I	1		I	I	
0		3			6			9			12			15

A stringent test: Deep tropical convection

- 20 ranges of CTES altitude: (0, 1.5] km... (11.43, 15.6] km

- most cover 0.025 to 0.035 of the domain

- clear-sky is the 21st range... 990,904 columns

- range 12: cloudtops \in [8.127, 8.427] km
- fraction = 0.024... 55,678 columns
- sort CWP (quicksort) with (*i*,*j*) going along passively

positions of 20 GLQ points

 $n_G = 12 \text{ of } 20$ cloudtops \in [8.127, 8.427] km

cloudy columns in this partition = 55,678

 $f(x) dx \approx \sum_{n=1}^{\infty} w_n f(x_n) \quad \begin{array}{l} -f(x) \text{ is approximated by a} \\ \text{poly. deg} \cdot \leq (2n_G - 1) \text{ on } [0, 1] \end{array}$

- apply full BB models to each GLQ column ...

 $n_G = 12 \text{ of } 20$ cloudtops $\in [8.127, 8.427] \text{ km}$

cloudy columns in this partition = 55,678

A stringent test: Deep tropical convection

A stringent test: Deep tropical convection

- application of full BB models to each GLQ <u>column</u>... but only that column...

Cloudless columns

$$\frac{1}{\mathcal{N}} \sum_{n=1}^{\mathcal{N}} F_n = \frac{1}{\mathcal{N}} \sum_{n=1}^{\mathcal{N}} F_{m(n)} \equiv \int_0^1 F(s) \, ds \approx \sum_{n=1}^{n_G} w_n F_{\widehat{s}_n}$$
full ICA sorted ICA integral form n_G -point GLQ MCICA (benchmark)
$$\frac{m(1) \leftarrow \min\{W_n\}}{m(\mathcal{N}) \leftarrow \max\{W_n\}} = 0 \leftarrow \min\{W_n\} \qquad s_i = \frac{i-1}{\mathcal{N}-1}$$
= water vapour path (g m⁻²) \longrightarrow only 10 columns to represent 990.904

 $\begin{cases} W_n = \text{water vapour path (g m}^{-2}) \\ n_G = 10 \end{cases} \longrightarrow \text{only 10 columns to represent 990,904!}$

Boundary fluxes v. heating rate profiles

 $n_G = 12 \text{ of } 20$ cloudtops $\in [8.127, 8.427] \text{ km}$

Boundary fluxes v. heating rate profiles

 $n_G = 12 \text{ of } 20$ cloudtops $\in [8.127, 8.427] \text{ km}$

MBE and RMSE or quantiles?

20 cloudtop altitude partitions

Structure function analysis

 $S_q(L) = \langle |r(x) - r(x+L)|^q \rangle; \quad q \ge 0; \quad \Delta x \le L \le N \Delta x; \quad r_1 \le r \le r_2$

$$S_2(L) \sim L^{\zeta(2)} \longrightarrow P(k) \sim k^{-\beta} \longrightarrow \zeta(2) = \beta - 1$$

- r can be either a single field or the difference between two renderings of a field
- analyses performed for surface fluxes and HRs
- focus on q = 2
- *L* from 2 km to 64 km
- $\zeta(q)$ estimated by LLSR

Structure function analysis

surface solar irradiance

Structure function analysis

Variable SW irradiance across domains

 $500 \times 500 \text{ km}$ @ latitude = 48°N

apply RT using domain-average cos(SZA) and scale when re-positioning

$$Q_{rad}(i,j) = \left[\frac{\mu_0(i,j)}{\langle \mu_0 \rangle}\right] Q_{rad}(n_-GLQ)$$

Information overload

If the entire domain cannot be handled at once, sub-domains can be defined and the process applied in parallel.

cloudtop altitude (km)

- reduce RT by 2,000x
- ~1,180 RT executions

1. entire domain, 20 partitions @ n_G = 59 (59 partitions @ n_G = 20)

2. 25 sub-domains, 10 partitions, $n_G = 5$

Variable surface conditions

- surface type: water v. land
 - use surface type as a partition and allocate n_G proportional to areas
- variable surface temperature
 - again, partition according to ranges (cf. cloudtop altitudes)
- surface elevation
 - more complicated given terrain-following vertical coordinates
 - partition according to altitude ranges followed by interpolation???
- a "partitioning algorithm"... somewhat tantamount to McICA's generator

Summary

To date

- currently RT accounts for 15% 35% of a hi-res cloud (NWP) model's CPU time
 - RT is always 1D-ICA and usually applied with (relatively) long timesteps move to 3D RT... warrant???... If not, then:
- *proposal*: partition, sort, GLQ, and redistribute
- > 3,000x fewer calculations than full ICA... *full-resolution* Q_{rad} at *every* dynamic timestep
 - sorting and indirect accessing overheads... 1,000 2,000x should be possible

Ongoing activities

- *verification:* more diagnostic tests with various cloud and surface conditions
- *validation:* SAM (v6.11)... testing for a range of cloud and meteorological conditions
 - especially ones in which cloud-radiation interactions are demonstrably important

- Thank You -