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Line-by-line absorption of
atmospheric gases and
ncorrelated k-distri
els
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Problem understanding -
Atmospheric transmission

Atmospheric transmission in the
spectral subinterval of the CALIPSO-IIR,
channel 3 for a mid-latitude summer
standard atmosphere: all gases (bottom)
and specific transmissions of different
species (top); separated from bottom to
top for: water vapor self-continuum
only, water vapor (local lines + self-
continuum + foreign continuum), carbon
dioxide and ozone; response function of
Channel 3 of CALIPSO-IIR; spectroscopic
databases are HITRAN-2008 and the MT-
CKD 2.4 water-vapour continuum

[Doppler et al., 2014]



Spectral transmission: H20 and CO2
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Transmission of H20 (blue lines) and CO2 (red lines) from TOA to surface (full line) and from TOA to 10 km;

Mid-latitude summer Atmosphere.



H20 and CO2

ission:
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K-bin Background
Most solutions of radiative transfer are based on Beers Law
1,(s)=1,(0)exp[~k, 5]
Trans (s)=exp|—k, -s]

But ,real world® instruments (like MODIS) are not monochromatic

TranS(V,Av,S) = Aivfexp[—kv (po,1y) - sldv

and the ,real world” atmosphere is not homogeneous in the vertical

1 layer

TranS(V,Av,S)z— exp _Zkv(PnTz)]‘Sz dv
1 |

AV




K-bin - Solution 1: Line-by-Line calculation

layer
Tmm(v,Av,s)zAL exp —Zy:kv(pl,Tl)]-Sl dv
V B 1 a
L [ layer |
Tmns(v,Av,S)zA—Z&/-exp _Zki(PnTz)‘Sz]
Vo ] i

by-Line calculations are computationally expensive if scattering is included.
However they are precise !



K-bin - Solution 2: correlated k-distribution
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1. Separate the spectral interval into many small “monochromatically valid” sub-intervals.
2. Sort the extinction coefficients
3. Group of the extinction coefficients into N classes of similar k’s (Find the mapping function)
4. Make radiative transfer calculations only for the N classes instead for iiii sub-intervals



K-bin - Solution 2: correlated k-distribution

7 mns(v, Av, S) ~

1 N layer
Zwi ZZWI' -exp{— Zl:ki(pz»Tz)'Sz]}

The sorting and grouping of the ks is made in each layer. The above equation can only
work, if the wavelengths belonging to each class are (almost) the same. (If the mapping
functions of the layers are correlated). But the assumed correlation is not always
fulfilled e.g. MODIS band 5 (different species) and even in MERIS band 11 (overlapping

wings).

Lacis, A. A., and V. Oinas, A description of the correlated k distribution ..., J. Geophys. 1991



K-bin - Solution 3: “uncorrelated” k-distribution

The basic k-distribution equation remains (M: mapping function, R: channel response,
w: weight of term):

Trans(v, AV,S) = iiwi -exp{— mjzerlgi(Pz»Z) ’ 51]}
w, = [R(M,)dv k, = (k(M,))

But the methods for finding the optimal mapping function (M) are new.

What is “uncorrelated”?



K-bin - Solution 3: “uncorrelated” k-distribution

» The mapping function must allow the precise approximation of the total transmission!

layer

Abs(z Zw exp{ Zk (p;,1;)-s, } IR(V) exp{ lairk (p,,1))] Sl:|d1/)—)0
w,

» The mapping function must be the same for each layer (= 100% correlation)!

K K

Wavelength Wavelength
k k
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Layer 2

In this (extreme) example the correlated k-distribution would sort the coefficients (wrongly
assuming spectral correlation of the extinction coefficients) and calculate a total transmission of 0.5
(grey means transmission of 0 and white of 1) whereas the real transmission is 0!



K-bin - Solution 3: “uncorrelated” k-distribution
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Schematic representation of the k-bin approach; the broadband wavenumber interval is initially
subdivided into N k-bin intervals; the interval with the highest error in transmission compared to
monochromatic transmittances is subdivided into two intervals; the process is then iteratively repeated
until all transmittance errors fall below a user-defined threshold (see Doppler et al., 2014).
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K-bin - Solution 3: Results for OCO

The maximum simulated transmission error for O-C-O’s
oxygen channels (fwhm ~0.08nm) is below 1.4%, the
mean transmission error is below 0.15% if O-C-O’s
channels are simulated with 300 k-terms. This is the
same order of magnitude as for a (small !) 0.001nm
error in O-C-O’s channel position.

0.001 nm error in O-C-O channel position
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K-bin - Solution 3: Results for MODIS 1.24 um channel
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MODIS Band 5 is influenced by H20 and O2. The main amount of the total absorption is in the lower
atmosphere, which is determined by water vapor. In the case of a high cloud the correlated K-distribution
would produce wrong results, since then the transmission is determined by oxygen absorption, which's
spectral features are not correlated with the spectral features of water vapor. The new method produced
results, that are better than 0.1% (abs.) in each layer and in total when using 40 terms.



K-bin - Solution 3: Results for 1.2 — 1.3um broadband
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This band is influenced by H20, 02, NO2; The main amount of the total absorption is in the
lower atmosphere, which is determined by water vapor.



K-bin - Solution 3: Results for 1.9 — 2.0um broadband
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This band is influenced by H20, CO2; The main amount of the total absorption is in the
lower atmosphere, which is determined by water vapor.



K-bin - Solution 3: Atmospheric Layers
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transmision

K-bin - 50 terms: Results for 1.9 — 2.0um broadband
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Transmission to layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.
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K-bin - 50 terms: Results for 1.9 — 2.0um broadband
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Transmission to layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.
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K-bin — 50 terms: Results for 1.9 — 2.0um broadband

TOA to Layer 4: 5 - 10 km
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Transmission to layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.



K-bin — 50 terms: Results for 1.9 — 2.0um broadband
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Transmission to layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.
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K-bin — 50 terms: Results for 1.9 — 2.0um broadband

TOA to Layer4:1-2 km
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Transmission to layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.
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K-bin — 50 terms: Results for 1.9 — 2.0um broadband

TOA to Layer 4: 0.1 -1 km
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Transmission to layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.




K-bin — 50 terms: Results for 1.9 — 2.0um broadband

TOA to Layer 4: 0 — 0.1 km

—— highres
- —— ukbin
o 15-
» —— ckbin
-
2 10+
e
-
5-
2 4 6 8
amf

0.06 -

0.04 -

0.02 -

— (h-uk)
—— (h-ck)
\
2 4 6 8

Transmission to layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.
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K-bin — 50 terms: Results for 1.9 — 2.0um broadband

Layer 4: 20 - 50 km
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Transmission of layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.
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K-bin — 50 terms: Results for 1.9 — 2.0um broadband

Layer 4: 10 - 20 km
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Transmission of layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.



60 1

transmision
wun
(&)

K-bin — 50 terms: Results for 1.9 — 2.0um broadband
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Transmission of layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.
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K-bin — 50 terms: Results for 1.9 — 2.0um broadband
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Transmission of layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.




transmision

K-bin — 50 terms: Results for 1.9 — 2.0um broadband
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Transmission of layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.
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K-bin — 50 terms: Results for 1.9 — 2.0um broadband

Layer 4: 0.1 -1 km

30 - E— highres
—— ukbin
—— ckbin
20 1
10-
2 4 6 8
amf

0.5 1

0.4 1

0.3 ;

0.2 1

Transmission of layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.




K-bin — 50 terms: Results for 1.9 — 2.0um broadband

Layer 4: 0 - 0.1 km
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Transmission of layer versus air-mass (amf) estimated by line-bay-line (blue), correlated
(red) and un-correlated k-binning (green); mid-latitude summer atmosphere.
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Comparison of “uncorrelated “ k-binning MOMO and RRTMG
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Broadband Simulators

RRTMG (lacono et al., 2008)

fixed LBLRTM-based corr. k distr.
Hu-Stamnes cloud parametrization
SW: 0.2-12.5um; LW: 3.0-1000.0um
14 solar & 16 longwave bands

MOMO (Hollstein and Fischer, 2012)

= un-correlated k-distr. (Doppler et al., 2014)
» Mie-calculated cloud and aerosol properties
= SW:0.2-4.0um; LW: 3.0-100.0um

= 53 solar & 42 longwave spectral band

= 35 quadrature points

Both RTMs are plane-parallel, HITRAN-based
gas absorption



Heating rates: Comparison of “uncorrelated “ k-binning MOMO
and RRTMG TOA SW Flux
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Heating rates: Comparison of “uncorrelated “ k-binning MOMO

and RRTMG

SW heating rates:

» similar response to cloud properties

» RRTMG with less absorption at cloud-top:

» MOMO with enhanced water-vapour
absorption due to multi-scattering

» clear-sky water-vapour absorption
agrees quite well
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Heating rates: Comparison of “uncorrelated “ k-binning MOMO
and RRTMG

MOMO vs. RRTMG Simulation Output MOMO vs. RRTMG Simulation Output
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Conclusions: K-binning

* Correlated K-distribution methods are sufficient to picture the total
transmission due to atmospheric gaseous absorption

* Un-correlated K-distribution methods are sufficient to picture the
total transmission and the layer transmission due to atmospheric
gaseous absorption

* Un-correlated K-distribution methods provides higher accuracy since
it takes care of the different line shapes within different atmospheric
layers

e Un-correlated K-distribution provides sufficient accuracy depending
of the number of k-binning terms



Conclusions: Applications

* The broader the spectral “bands” the less k-binning terms are
needed (at least in most of the cases !)

* Satellite spectral measurements should be simulated by uncorrelated
K-distribution methods, depending on the required accuracy
(assimilation).

e Un-correlated K-distribution method, used by MOMO differs by
1.5 W/m?2 in the longwave
and
10 W/m2 in the shortwave
when compared to much more simplified RRTMG.



