Challenges for radiation in NWP models

<u>Robin Hogan</u>, Alessio Bozzo, Mark Fielding, Howard Barker, Frederic Vitart, Sophia Schaefer, Inna Polichtchouk and many colleagues at ECMWF

r.j.hogan@ecmwf.int

Radiation and predictability

Modular radiation scheme for ECMWF: ecRad

- Gas optics
 - RRTM-G (as before)
 - Plan to develop new scheme with fewer spectral intervals
- Aerosol optics
 - Number of species and optical properties set at run time
 - Supports prognostic & diagnostic aerosol
- Cloud optics
 - Liquid clouds: more accurate SOCRATES scheme
 - Ice clouds: Fu by default,
 Baran and Yi available

Solver

- McICA, Tripleclouds or SPARTACUS solvers
- SPARTACUS makes the IFS the only global model that can do 3D radiative effects
- Better solution to longwave equations improves tropopause & stratopause
- Longwave scattering optional
- Can configure cloud overlap, width and shape of PDF
- Surface (under development)
 - Rigorous and consistent treatment of radiative transfer in urban and forest canopies
- Offline version available for non-commercial use under OpenIFS license

Improved efficiency

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

- Much faster than original scheme in operational configuration
- 3D radiation is more expensive, but feasible in research mode

Cloud treatment is much faster

Fast longwave scattering for clouds but not aerosols

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Impact on forecast skill

- Latest version of ecRad reduces temperature RMSE by ~0.5% compared to older McRad scheme
 - Combination of longwave scattering, reduced biases and (possibly) reduced McICA noise
- All model configurations except HRES call radiation every 3 h
- Reinvest 40% speed-up by calling radiation every 2 h?
 - Temperature RMSE reduced by 1-2%, associated with better low clouds especially over tropical rainforests
- Ensemble system plans to use 1 h radiation from operational cycle 46R1
 - Temperature RMSE down by 3%

Hogan & Bozzo (submitted to JAMES)

error (%)

Change in RMS

0

2-m temperature

-ow cloud cover

(g)

Are we using our computer time wisely?

•	Temporal,	spatial	and	spectral	resolution	in	various	global	NWP	models:
---	-----------	---------	-----	----------	------------	----	---------	--------	-----	---------

Centre	Radiation timestep (h)		Horiz. coarsening		Bands		Spectral intervals	
	HRES	ENS	HRES	ENS	SW	LW	SW	LW
ECMWF	1	3	10.24	6.25	14	16	112	140
NCEP	1	1	1	1	14	16	112	140
DWD	0.4	0.6	4	4	14	16	112	140
Météo France	1	1	1	1	6	16	_	140
Met Office	1	1	1	1	6	9	21	47
CMC	1	1	1	1	4	9	40	57
JMA	1	1 (SW), 3 (LW)	4	4	16	11	22	156
FSCK	_	_	_	_	2	1	~ 15	~ 32

ECMWF has lowest spatial resolution for radiation

- Experiments show this barely degrades forecasts (unlike 3-h radiation timestep)
- Met Office NWP model uses 3.7 times fewer g-points than RRTM-G
- Full-spectrum correlated-k estimates of coarsest possible spectral resolution

IFS model climate: *the good*...

	<2 ≥2 ≥4 W m ⁻²				
Wild et al. (2015) Surface downwelling	Global SW	Global LW	Land SW	Land LW	
Observations	184.7	341.5	184	306	
43 climate models	4 ± 5	-2 ± 4	6 ± 10	-4 ± 7	
ERA-Interim	3.7	-0.1	3.6	-2.0	
Coupled IFS climate	-0.4	-0.9	0.4	0.7	

... the bad... (SW cloud radiative effect bias)

...**and the ugly** (middle-atmosphere temperature bias)

• Shortwave side illumination

- Strongest when sun near horizon
- Increases chance of sunlight intercepting cloud

Errors due to neglecting 3D effects

• Shortwave entrapment

 Horizontal transport beneath clouds makes reflection to space less likely

• Longwave side emission

- Radiation can now be emitted from the side of a cloud
- 3D effects can increase surface cloud radiative effect

Evaluation of "SPARTACUS" solver for representing 3D radiative effects

- "Speedy Algorithm for Radiative Transfer through Cloud Sides": solve two-stream equations for (a) clear and (b,c) cloudy regions but add terms for lateral exchange
- For direct beam (considering two regions):

• Geometric terms *f*^{*ab*} depend on a parameterization of "cloud scale"

 Tested offline against Monte Carlo calculations for 59 varied scenes from Canadian and Met Office models at ~200 m resolution

Entrapment dominates

Side illumination dominates

Hogan et al. (2016)

Global impact of the specification of cloud structure and 3D effects

- Shonk and Hogan (2010) estimated the instantaneous change to cloud radiative effect of sub-grid cloud structure and overlap (W m⁻²)
- Best estimate from SPARTACUS suggests 3D effects have similar net impact to overlap decorrelation, but opposite sign
- Impact of turning on 3D effects in a free-running coupled simulation of the ECMWF model (5 member 20 years, average final 5 years): warm the surface by around 1 K, improve Arctic sea-ice bias

Mechanism	Shortwave surface	Longwave surface	Net surface
Add horizontal structure	+6.7	-2.9	+3.8 (±2)
Add overlap decorrelation (EXP-RAN minus MAX-RAN)	-4.1	+2.2	-1.9 (±0.2)
Add 3D effects	+0.9	+1.2	+2.1

Towards a consistent radiative treatment of complex surfaces

- The IFS currently treats urban areas as crops, grassland or forest $\boldsymbol{\Im}$
- The *infinite street canyon in vacuum* is ubiquitous in urban models (e.g. MORUSES, TEB):

- Can we instead use a more realistic two-stream treatment?
 - Scattering/absorption by walls treated by SPARTACUS-like exchange terms
 - Add gas/aerosol in the canopy coupled spectrally to the atmosphere above
 - Use a building-separation distribution fitted to observations
 - Possibly add street trees by solving two-stream equations in clear/vegetated regions with coupling terms (SPARTACUS-Vegetation: Hogan et al. 2018)

(e) Vegetated urban canopy

Geometry of real cities

- Geometry aspects of radiative transfer determined entirely by
 - Building height *H* (assumed constant)
 - The probability distribution of wall-to-wall distances $p_{ww}(x)$
- If probability distribution is exponential:

$$- p_{ww}(x) = \exp\left(-\frac{x}{L}\right)/L$$

• ...then the propagation of direct solar radiation through the urban canopy follows Beers law, and is easy to incorporate into a two-stream scheme:

$$- F_{dir,street} = F_{dir,top} \exp\left(-\frac{H}{L} \tan \theta_0\right)$$

How important is air in the canopy for LW radiative transfer?

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

16

Canopy vacuum

How important is air in the canopy for LW radiative transfer?

17

How important is air in the canopy for LW radiative transfer?

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Canopy vacuum

Aerosols

• Atmospheric forcing depends on *absorption* optical depth:

- Reduced absorption over Arabia in new CAMS climatology weakens the overactive Indian Summer Monsoon, halving the overestimate in monsoon rainfall
- Increased absorption over Africa degraded 850-hPa temperature, traced to excessive biomass burning in CAMS
- We can measure the impact of aerosols on the tropical atmosphere more easily than the absorption optical depth itself! Use to provide information on aerosol errors?

(d) CAMS climatology: zonal wind *bias*

Middle atmosphere warm bias

- Historically, IFS has had a huge warm bias in upper stratosphere and above
- Improved in recent cycles (better longwave in ecRad, CAMS ozone, better solar zenith averaging)
- Remaining bias could be removed in stratosphere by updating solar UV which is 7-8% too high in IFS
- Lower mesosphere could be improved with a diurnal cycle of ozone (even if approximate)
- But resolution-dependence of lower stratosphere temperature (due to waves) needs to be addressed

Exploring the cause of the polar lower stratosphere cold bias

g difference in % [analysis-MLS]

DJF 2012/2013

10¹

395 50 100 pressure [hPa] 150 130 (e 200 250 -135 300 Ę 10² 350 400 -400 450 500 60 30 -30 -60 Latitude (°N) ROM -240 TO 240 BY 25 latitude

- Up to 5 K too cold
- Problem in IFS for at least 25 years
- Common to most/all global models

- Water vapour bias compared to MLS (%)
- Erroneous transport of water vapour from troposphere, emits too strongly in longwave

- What if we artificially reduce humidity seen by radiation?
- Just for experimental purposes, not operations!

Cold bias removed!

Impact of removing polar cold bias

- Monthly forecast experiment artificially reducing humidity seen by radiation leads to *improvement in troposphere monthly forecast skill* (good example of radiation interacting with other processes)
- What's the dynamical mechanism? Is it related to polar vortex variability or QBO teleconnections?

 In the last 2 months, Filip Vana has developed a better Semi-Lagrangian advection scheme for the IFS that largely cures the excessive humidity transport – next step is to verify that it also improves monthly predictive skill!

> Thanks to Frederic Vitart (blue is good!)

Summary and outlook

- Need to make progress on many fronts to improve radiative transfer in NWP models
- Traditional approach is to reduce biases in the *model climate*, for example:
 - Aerosol changes can improve tropical biases in monsoons
 - 3D radiation is an option in the ecRad radiation scheme, and can possibly improve polar biases
 - Fixing lower stratosphere temperature bias improves monthly forecast skill
- It is possible, but more tricky, to improve forecasts via other means
 - Understanding the interaction between radiation and other processes is crucial
 - Faster radiation schemes can be called more frequently leading to better cloud-radiation interactions
 - Better interaction with complex surfaces should improve local forecasts, especially in urban areas
- What are the opportunities from better collaboration between those working on radiation in weather and climate, and from the land surface up to the mesosphere (and other planets)?
- I wish you all a stimulating and enjoyable workshop!

Why does more frequent radiation improve tropical forecasts?

• Fractional change to 5-day forecast RMSE... but what is the mechanism for improvement over rainforests?

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

What is the cause of near-surface temperature errors at individual sites?

- · Some locations are much more difficult than others!
 - Sapporo is a large city, by the coast, surrounded by mountains, with large annual snowfall
- ECMWF has a new task force to unpick the causes of surface temperature errors (including BL, clouds, surface schemes)
- But there are obvious areas where radiation needs to be improved, e.g. coastlines, forests and urban areas

Sapporo shortwave

Sapporo longwave

- Far too little downwelling LW: not enough cloud?
- Early evening error could also be signature of urban heat island (Oke 1982), not in model

Improved accuracy

 As well as being much faster, reformulation of McICA scheme generates less stochastic noise Pressure (hPa)

 Calling radiation more frequently than 3 h has a much greater impact on forecast skill than calling it every model gridpoint

Test of revised water vapour continuum in near infrared

- Measurements from "CAVIAR" project (Shine et al. 2016) suggest water vapour continuum in near-IR could be up to a factor of 10 too small in RRTM-G
- In coupled climate runs, troposphere warms by ~0.5 K;
 1 K over summer pole
- In forecasts, impact on RMSE for temperature and wind depends on existing small biases in these quantities

