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Various natural disasters in Japan

V4

Volcanoes Earthquake

Pyroclastic flow from Mt. Cw- ISy
27 Sep. 2014 ©Ministry of Land ““
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The 2011 off the Pacific coast of Tohoku Earthquake (M9 0))]
11 March 2011
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Deadly heavy rain events occur
almost every year

11-14 July 2012 N b

30 dead or missing ./ .,

o 9-10 Aug. 2013 -
8 dead
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1)/ 9-11Sep. 2015
s Heavy flood 14 dead




Watch and Prediction of heavy
rainfall are cruaal for disaster
—apreventtq_n 1 and mit _atlon




WATCH: precipitation analysis

JMA has created an optimal mix of the advantages found in raingauge data and radar data.

4 Calibrated radar data = e A
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Raingauge data

Precipitation amounts observed by radar @
generally does not agree with those

observed by raingauges, and radar data are
therefore calibrated with raingauge data.

The calibrated radar data are then made into

a single composite data set.
’

Radar/Raingauge-Analyzed Precipitation

Radar/Raingauge-Analyzed Precipitation data
depicts hourly precipitation with high dimensional
accuracy, and is issued every thirty minutes with a )

spatial resolution of 1 km.
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‘Watch’ =) ‘Prediction’
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Precipitation
amounts (not just a
synthesized radar

echo)
14

If this quantitative
value is assimilated
to NWP, short-range
forecasts by the
model would
improve ... but How
to assimilate?




JMA MesoScale Model (MSM)

* Operation started in 2001 as a hydrostatic spectral
model with resolution of 10km, providing 18-hour

forecasts four times a day
* |nitial condition was provided by

— Optimum Interpolation Method (for ordinary observation

data)

— Physical Initializatian (far nrecinitation amauint<)

ifp| Pl tended to produce too much or
" Yfalse precipitation
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A better assimilation method was
required.

So we started development of 4D-Var
assimilation system for MSM around year
2000. e =




Specification of the 4D-Var system

The “inner” model (used for iterative calculation)
e Grid distance: 20km (incremental approach)
 Forward: non-linear, backward: linear (the
background field is updated every iteration)
 Some physical processes in the adjoint model were
simplified or omitted
Assimilation window: Three hours before analysis time
Control variables: {uU Vs (T, P, q} in grid space including boundary
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Vertical correlation matrices are decomposed to eigenvectors
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Some difficulties in the
development

1. LARGE Dimension of background error
covariance (B)

2. A strange (non-Gaussian) type of
observation error probability
distribution of precipitation amount
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Size of B (horizontal correlation)

For a global model, assumption of homogeneity and
isotropy of background errors reduces their horizontal
covariance matrices to be diagonal in spectral space.

However...

For a limited-area model, even assuming
homogeneity and isotropy, the background error
covariance matrix CANNOT be made diagonal
(even in the spectral space).
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Size of B (horizontal correlation)

(cont.)
Assuming homogeneous Gaussian-type error

correlation
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Size of B (horizontal correlation)
(cont.)

 With Cholesky decomposition of B, an error
covariance matrix of new variable u is identity

matrix
B—LL! x=Lu

Jp=(x—xp) "B {x—x3) = (u—up) TLT(LLT) " 1L{u — uy,)
= (u— ub)TLTL_TL_lL(u —up) = (u— ub)T(u — up)

e Problem is, x=Lu is necessary for each 4D-Var
iteration, and L is still HUGE.

In our first implementation, x=1Lu took almost 80%
of calculation time! It’s not tolerable!
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Size of B (horizontal correlation)
(cont.)
So, what did we do?

* As the horizontal correlation is assumed to be a
Gaussian function of grid distance, correlation
between distant grids might be negligible.

* |n order to reduce computational time of x=Lu,
once a term becomes smaller than a certain
threshold value, the calculation of remaining
rows are skipped.
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Observation error of precipitation amounts

Scattering diagram of Observation Departure (d =y,— Hx,)

('1? Temperature at 500hPa - One-hour Precipitation

| 5—f+
Apparently, error distribution of precipitation
J 1S non-GaussianI

& And |t seems mapproprlate to assume that
"Ithe observation error is constant for
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Observation error of

precipitation amounts
Assuming exponential distribution for conditional PDF of

precipitation y
1.y
pprecip(yoly)=§e , y=Hx  (y,,y>0)

Then deriving observational term from the PDF

‘Jprecip(y) - |Og pprecip(yo | y) — y_; + |Og y

2
_ (y2yy§) +O[(y— y0)3]+1+ log y,
- yg)z +const.
Practically, 20,
_Jo (VY=<VY,) _ Imm/h  (y, <1mm/h)
> B0 (Y>VY,) Y (Y, >1mm/h)
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A\ with a Four-dimensional Variational Method and its Impact on Precipitation Forecasts. SOLA, 1, 45-48



Log-likelihood of exponential
distribution is asymmetric
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It has worked!

-Precipitation within assimilation window-
Observation First Guess

&

_ ‘S’ir-nilar! )
w/o Precip. Dataggf h Precip. Data

(21-24 UTC 15 March 2000)¢" ~
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Precipitation Forecasts (First 3-hour)

Observation Ol+PI

 V

S

_ _ Simila@ _ _
4D-Var w/o PI‘eCIp.&T -Var with Precip.

(0-3 UTC 16 March 2000) &~
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Verification of 3-hour precipitation
forecasts on 40km meshes
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2001
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Operation of 4D-Var data
aSS|m|Iat|on system er MSI\/I
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Moisture field is also crucial for
precipitation forecasts

* JMA analyses Zenith Total
Delay (ZTD) at over 1,000
ground-based GNSS
receivers owned by
Geographical Survey
Institute.

* The hourly product is
provided on real-time basis.
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Assimilation of
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and moisture

ooth precipitation amount
orovides better forecasts

Equitable threat scores and bias scores for 3 hour precipitation for
124 forecasts (15-hour forecast 4 times a day) for forecast-analysis
cycles experiment during one month period of July 2006
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Happy ever after? ... NO!

* Development of tangent-linear codes of the
NWP model and their adjoints is costly.

* That is the reason why upgrade of the
assimilation system falls behind the model
upgrade for several years.
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Equitable Threat Score of MSM forecasts

for 10mm/hour precipitation
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For sustainable development

e Currently, developers of the latest model
(asuca) also work for development of its TL/AD

— Pros: they know the model well, so it is relatively
. . . el

We are still searching for
a better way!

— Cons: TL/AD development requires some extra
programming techniques, meaning extra
education is necessary for the developers.
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Thank you!
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